Three-phase Thyristor Unit
400VAC Type

THW-3

Instruction Manual
Company names and product names used in this manual are the trademarks or registered trademarks of the respective companies.
Thank you for purchasing this RKC instrument. In order to achieve maximum performance and ensure proper operation of your new instrument, carefully read all the instructions in this manual. Please place this manual in a convenient location for easy reference.

SYMBOLS

WARNING
: This mark indicates precautions that must be taken if there is danger of electric shock, fire, etc., which could result in loss of life or injury.

CAUTION
: This mark indicates that if these precautions and operating procedures are not taken, damage to the instrument may result.

⚠️
: This mark indicates that all precautions should be taken for safe usage.

📖
: This mark indicates important information on installation, handling and operating procedures.

📖
: This mark indicates supplemental information on installation, handling and operating procedures.

โทษ
: This mark indicates where additional information may be located.

WARNING

- An external protection device must be installed if failure of this instrument could result in damage to the instrument, equipment or injury to personnel.
- All wiring must be completed before power is turned on to prevent electric shock, fire or damage to instrument and equipment.
- This instrument must be used in accordance with the specifications to prevent fire or damage to instrument and equipment.
- This instrument is not intended for use in locations subject to flammable or explosive gases.
- Do not touch the high-voltage sections such as power supply terminals, power supply lines and input/output terminals. If touched, electric shock or injury may result.
- Do not enter the hand into the opening of this instrument. If entered, electric shock or injury may result.
- RKC is not responsible if this instrument is repaired, modified or disassembled by other than factory-approved personnel. Malfunction can occur and warranty is void under these conditions.
This is a Class A instrument. In a domestic environment, this instrument may cause radio interference, in which case the user may be required to take adequate measures.

This instrument is protected from electric shock by reinforced insulation. Provide reinforced insulation between the wire for the input signal and the wires for instrument power supply, source of power and loads.

Be sure to provide an appropriate surge control circuit respectively for the following:
- If input/output or signal lines within the building are longer than 30 meters.
- If input/output or signal lines leave the building, regardless the length.

This instrument is manufactured on the assumption that it is mounted within a control panel. All high-voltage connections such as power supply terminals must be enclosed in the control panel to avoid electric shock by operating personnel.

All precautions described in this manual should be taken to avoid damage to the instrument or equipment.

All wiring must be in accordance with local codes and regulations.

Always use this product at the rated power supply voltage, load current and power frequency.

All wiring must be completed before power is turned on to prevent electric shock, instrument failure, or incorrect action.

To prevent instrument damage or failure, protect the power line and the input/output lines with a protection device such as fuse, etc.

If this product is used for phase control, higher harmonic noise may be generated. Therefore in this case, take such measures as installing an isolation transformer and separating the power line from the high-voltage line for load drive.

Prevent metal fragments or lead wire scraps from falling inside instrument case to avoid electric shock, fire or malfunction.

Tighten each terminal screw to the specified torque found in the manual to avoid electric shock, fire or malfunction.

For proper operation of this instrument, provide adequate ventilation for heat dispensation.

Do not connect wires to unused terminals as this will interfere with proper operation of the instrument.

Turn off the power supply before cleaning the instrument.

Do not use a volatile solvent such as paint thinner to clean the instrument. Deformation or discoloration will occur. Use a soft, dry cloth to remove stains from the instrument.

To avoid damage to instrument display, do not rub with an abrasive material or push front panel with a hard object.

This manual assumes that the reader has a fundamental knowledge of the principles of electricity, process control, computer technology and communications.

The figures, diagrams and numeric values used in this manual are only for purpose of illustration.

RKC is not responsible for any damage or injury that is caused as a result of using this instrument, instrument failure or indirect damage.

RKC is not responsible for any damage and/or injury resulting from the use of instruments made by imitating this instrument.

Periodic maintenance is required for safe and proper operation of this instrument. Some components have a limited service life, or characteristics that change over time.

Every effort has been made to ensure accuracy of all information contained herein. RKC makes no warranty expressed or implied, with respect to the accuracy of the information. The information in this manual is subject to change without prior notice.

No portion of this document may be reprinted, modified, copied, transmitted, digitized, stored, processed or retrieved through any mechanical, electronic, optical or other means without prior written approval from RKC.
CONTENTS

1. **OUTLINE** ... 1
 1.1 Checking the Product .. 2
 1.2 Parts Description ... 4

2. **MOUNTING** .. 6
 2.1 Mounting Environment ... 6
 2.2 Mounting Cautions ... 7
 2.3 Dimensions .. 8
 2.4 Mounting Procedures .. 11

3. **WIRING** .. 12
 3.1 Circuit Block Diagram .. 12
 3.2 Wiring of Main Circuit ... 13
 3.3 Wiring of the Step-Down Transformer ... 15
 3.4 Wiring of Controller (Auto Mode) ... 16
 3.4.1 Wiring of the current input .. 17
 3.4.2 Wiring of the voltage input or voltage pulse input 17
 3.4.3 Wiring of the series connection (For current input) 18
 3.4.4 Wiring of the parallel connection (For voltage input or voltage pulse input) 18
 3.5 Wiring for Input/Output Connector .. 19
 3.5.1 Input/output connector pin number and details .. 19
 3.5.2 Caution for wiring input/output connector (plug) 20
 3.5.3 Wiring of external manual setter ... 20
 3.5.4 Wiring of external gradient setter ... 20
 3.5.5 Wiring of external contact input ... 21
 3.5.6 Wiring of Auto mode (with gradient setter) ... 21
 3.5.7 Wiring of Auto/Manual mode selection .. 22
 3.5.8 Wiring of Auto/Manual mode selection (with gradient setter) 22
 3.5.9 Wiring of alarm output .. 23
 3.5.10 Wiring of contact input ... 23
 3.5.11 Wiring of ON/OFF control .. 24
4. SETTING .. 25
 4.1 Mode Menu .. 25
 4.2 Monitor Mode 1 .. 27
 4.2.1 Display sequence .. 27
 4.2.2 Description of each monitor item ... 28
 (1) Input signal monitor 1 (InS1) .. 28
 (2) Phase angle ratio monitor (PHAr) ... 30
 (3) Current value monitor (CT) ... 30
 (4) Voltage value monitor (Vo) ... 30
 (5) Power value monitor (PoW) ... 30
 4.3 Monitor Mode 2 .. 31
 4.3.1 Display sequence .. 31
 4.3.2 Description of each monitor item ... 32
 (1) Power frequency monitor (IFrq) ... 32
 (2) Input signal monitor 2 (InS2) .. 32
 (3) External gradient set value monitor (EGr) ... 32
 (4) External manual set value monitor (EMAn) ... 32
 (5) Contact input state monitor (dIST) ... 32
 4.4 Setting Mode ... 33
 4.4.1 Display sequence .. 33
 4.4.2 Changing parameter settings ... 34
 4.4.3 Description of each parameter .. 36
 (1) Internal manual set value (IMAn) ... 36
 (2) Internal gradient set value (IGr) ... 36
 (3) Soft-start time (SoFS) ... 36
 (4) Soft-down time (SoFd) .. 36
 (5) Maximum load current set value for alarm (MAXC) 37
 (6) Heater break alarm 1 set value setting (HbA1) .. 37
 (7) Thyristor break-down set value setting (THb) ... 38
 (8) Heater break alarm 2 set value setting (HbA2) .. 38
 (9) Current limiter value setting (CT) .. 39
 (10) Set data lock setting (LCK) ... 39
 4.5 Engineering Mode ... 40
 4.5.1 Transfer to engineering mode ... 40
 4.5.2 Display sequence .. 42
4.5.3 Description of each parameter ... 43
(1) Function block 24 (F24.) ... 43
 ■ Contact input action (dISL) .. 43
(2) Function block 30 (F30.) ... 43
 ■ Output mode for phase control (oS) ... 43
 ■ Alarm 1 output logic (LGA1), Alarm 2 output logic (LGA2) 44
(3) Function block 45 (F45.) ... 44
 ■ Number of heater break alarm 1 delay times (HbC1) 44
 ■ Heater break alarm 1 type (AS1) .. 45
 ■ Alarm interlock (ILS) .. 45
(4) Function block 46 (F46.) ... 45
 ■ Number of heater break alarm 2 delay times (HbC2) 45
 ■ Heater break alarm 2 type (AS2) .. 45
(5) Function block 51 (F51.) ... 46
 ■ Control method (ConT) .. 46
 ■ RUN/STOP action (rSA) .. 46
 ■ Input signal (InSS) .. 46
(6) Function block 52 (F52.) ... 47
 ■ Output limiter (high) (oLH) ... 47
 ■ Output limiter (low) (oLL) ... 47
 ■ Output limiter (high) at operation start (SoLH) 47
 ■ Output limiter (high) time at operation start (SoLT) 47
 ■ Base-up set value (bAU) .. 47
(7) Function block 60 (F60.) ... 48
(8) Function block 91 (F91.) ... 48
 ■ ROM version ... 48
 ■ Integrated operating time [upper 2 digits] (WTH) 48
 ■ Integrated operating time [lower 4 digits] (WTL) 48

5. FUNCTIONS .. 49
5.1 Control Method .. 49
5.2 Ramp Function (Soft-Start/Soft-Down Function) 49
5.3 Gradient Setting Function .. 50
5.4 Output Limiter (High and Low) .. 50
5.5 Output Limiter (High) at Operation Start .. 51
5.6 Base-Up Setting Function .. 52
5.7 Output Mode for Phase Control ... 53
5.8 Current Limiter Function ..56
5.9 Automatic Power Frequency Detection and Power Frequency Monitoring Function ..56
5.10 Alarm Interlock Function ..57
5.11 Heater Break Alarm 1 (HBA1), Heater Break Alarm 2 (HBA2) and Thyristor Break-Down Alarm ...57
5.11.1 Number of alarm delay times ...57
5.11.2 Heater break alarm for phase control (Type 1) ..58
5.11.3 Heater break alarm for phase control (Type 2) ..64
5.11.4 Heater break alarm for zero-cross control..65
5.12 FAIL Alarm ...68
5.13 Negative Phase Sequence Alarm ..68
5.14 Over Current Alarm (optional) .. 68
5.15 Fuse Break Alarm (optional) ..68
5.16 Set Data Lock Function ...68
5.17 External Contact Input (DI) Function ...69

6. MAINTENANCE .. 70
6.1 Daily Inspection ...70
6.2 Troubleshooting ...71
6.3 Replacement of the Fast-Blow Fuse ..72
6.3.1 Replacement of the fast-blow fuse (without microswitch) 72
6.3.2 Replacement of the fast-blow fuse (with microswitch)75

7. SPECIFICATIONS ..77

APPENDIX ... 81
 ■ How to fix the terminal cover (optional) .. 81
 ■ Description of terms ..82
 ■ Character symbols ..82
1. OUTLINE

This instrument is a three-phase thyristor unit for power supply voltage 400 V AC.
It is possible to adjust power supplied to heaters, etc. by setting the signal from the controller, setter
(potentiometer) or front keys.

- **The rated currents of six types are available.**

<table>
<thead>
<tr>
<th>Power supply voltage</th>
<th>400 V AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated current</td>
<td>20 A</td>
</tr>
</tbody>
</table>

- **The input signal and set value can be checked on the display unit.**

The display unit can check the input signal, phase angle, power frequency, current and set value of
each parameter, etc.

- **The front keys can set the gradient setting and manual setting.**

In addition to the setting by an ordinary setter (potentiometer), it is possible to set internal gradient
setting and internal manual setting values by the front keys while checking these numeric values
shown on the display unit.

- **Automatic power frequency detection**

The instrument automatically detects a power supply frequency (50/60 Hz) when the power is turned
on.

- **The control of three types can be selected.**

It is possible to select by the front keys and then use any one of phase control, zero-cross control
(continuous) and zero-cross control (input synchronous type).
1.1 Checking the Product

Before using this product, check each of the following:

- Model code
- Check that there are no scratch or breakage in external appearance (case, heat radiation fin, front panel, or terminal, etc).
- Check that all of the items delivered are complete. (See below)

THW - 3 4 PZ □ - □ * □ □ □ - □

(1) (2) (3) (4) (5) (6) (7) (8)*

* The code shown in (8) is printed on the nameplate when the relevant accessory is specified as an option.

(1) Power supply
4: Three-phase 400 to 440 V AC

(2) Control method
PZ: Phase control/Zero-cross control (configurable)

(3) Rated current
020: 20 A
030: 30 A
045: 45 A
060: 60 A
080: 80 A
100: 100 A

(4) Input signal
4: Voltage input 0 to 5 V DC
5: Voltage input 0 to 10 V DC
6: Voltage input 1 to 5 V DC
7: Current input 0 to 20 mA DC
8: Current input 4 to 20 mA DC

(5) Output mode
N: Standard (Proportional phase angle to input, Proportional voltage to input, Proportional square voltage (electric power) to input)
6: Standard and Constant voltage control (No heater break alarm)
V: Standard and Constant voltage control (With heater break alarm and current limiter function *)
E: Standard and Constant current control (With heater break alarm and current limiter function *)
W: Standard and Constant power control (With heater break alarm and current limiter function *)

* When the Heater break alarm and Current limiter are provided, the Over current and Thyristor break-down alarm are available.
(6) Fuse
N: No fast-blow fuse is provided
F: Built-in fast-blow fuse
S: Built-in fast-blow fuse (With microswitch)

(7) Option function
N: No function

(8) Accessories
1: Setter (potentiometer, knob and scale plate) [1 set] and Input/Output connector (plug)
2: Setter (potentiometer, knob and scale plate) [2 set] and Input/Output connector (plug)
9: Input/Output connector (plug)
A: Terminal cover

■ Accessories (Order Separately)
THVP-S01: Setter (potentiometer, knob and scale plate)
THWP-C01: Input/Output connector (plug)
THWP-T01: Step-down transformer (for instrument power supply)
THWP-F22: Fast-blow fuse for 20 A
THWP-F32: Fast-blow fuse for 30 A
THWP-F42: Fast-blow fuse for 45 A and 60 A
THWP-F82: Fast-blow fuse for 80 A
THWP-FA2: Fast-blow fuse for 100 A
THWP-F23: Fast-blow fuse for 20 A (With microswitch)
THWP-F33: Fast-blow fuse for 30 A (With microswitch)
THWP-F43: Fast-blow fuse for 45 A and 60 A (With microswitch)
THWP-F83: Fast-blow fuse for 80 A (With microswitch)
THWP-FA3: Fast-blow fuse for 100 A (With microswitch)
THWP-A02: Terminal cover for 20 A, 30 A, 45 A and 60 A
THWP-A03: Terminal cover for 80 A and 100 A

The accessories attached to product
Instruction Manual (IMR01V02-E1) ... 1
Short bar (The short bar is connected to the “input terminals.”) 1
Step-down transformer (for instrument power supply: THWP-T01) 1

If any of the products are missing, damaged, or if your manual is incomplete, please contact RKC sales office or the agent.
1.2 Parts Description

The name is the same as for each type (20 to 100 A).

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Description</th>
<th>No.</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Main circuit terminals (power supply side)</td>
<td>(1/L1, 3/L2, 5/L3) Used to connect three-phase power supply.</td>
<td>(8)</td>
<td>Indication lamps</td>
<td>Lights when any error occurs. For details, see the Description of Indication lamp (P. 5).</td>
</tr>
<tr>
<td>(2)</td>
<td>Power lamp (green)</td>
<td>Lit when the power is turned on.</td>
<td>(9)</td>
<td>Input terminals</td>
<td>Used to connect input signal wires (controller, etc.).</td>
</tr>
<tr>
<td>(3)</td>
<td>Display</td>
<td>• Display (upper): Display the parameters symbols and numeric value.</td>
<td>(10)</td>
<td>Grounding terminal</td>
<td>Used to connect the grounding terminal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Display (lower): Display the input signal value and each set value.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>(SET key)</td>
<td>Used for parameter calling up and set value registration.</td>
<td>(11)</td>
<td>Main circuit terminals (load side)</td>
<td>Used to connect the load.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2/T1, 4/T2, 6/T3)</td>
<td></td>
<td>(12)</td>
<td>Input/Output connector (socket) [Optional]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>(Shift key)</td>
<td>• Used to select the mode.</td>
<td>(13)</td>
<td>Power terminals</td>
<td>Used to connect the power supply of THW-3.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Shift digits when settings are changed.</td>
<td></td>
<td>(7/11, 8/12, 9/13)</td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>(DOWN key)</td>
<td>• Used to select the monitor item and function block (F).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Decrease numerals.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7)</td>
<td>(UP key)</td>
<td>• Used to select the monitor item and function block (F).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Increase numerals.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Description of indication lamp

If an error occurs, the indication lamp lights.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Action taken when an error occurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAIL (Board error)</td>
<td>This lamp lights if a board error of this instrument is detected by the self-diagnosis function.</td>
<td>Thyristor output OFF</td>
</tr>
<tr>
<td>FREQ (Power frequency error)</td>
<td>This lamp lights if power frequency is out of the allowable range (detecting range) when power is turned on or during operation.</td>
<td>Thyristor output OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The output can be turned ON when the error is canceled.</td>
</tr>
<tr>
<td>PHASE (negative phase sequence)</td>
<td>This lamp lights if negative phase sequence or the open phase is detected.</td>
<td>Thyristor output OFF</td>
</tr>
<tr>
<td>HBA1 (Heater break alarm 1)</td>
<td>Lights when Heater break alarm 1 output is turned on. HBA1 is not available when heater break alarm is not provided.</td>
<td>Control is continued.</td>
</tr>
<tr>
<td>THY.B (Thyristor break-down alarm)</td>
<td>Lights when thyristor break-down alarm output is turned on. Thyristor break-down alarm is not available when heater break alarm is not provided.</td>
<td>Control is continued. When shorted: Thyristor output continues to be turned ON. When broken: Thyristor output OFF</td>
</tr>
<tr>
<td>HBA2 (Heater break alarm 2)</td>
<td>Lights when Heater break alarm 2 output is turned on. HBA2 is not available when heater break alarm is not provided.</td>
<td>Control is continued.</td>
</tr>
<tr>
<td>OCR (Over current)</td>
<td>This lamp lights if the current of more than 1.2 times the rating of this instrument flows. The over current alarm is not available when heater break alarm is not provided.</td>
<td>Thyristor output OFF</td>
</tr>
<tr>
<td>FUSE (Fuse break)</td>
<td>This lamp lights if the fast-blow fuse in this instrument blew. Fuse break alarm is not available when the fast-blow fuse (with microswitch) is not provided.</td>
<td>Thyristor output OFF</td>
</tr>
</tbody>
</table>

The name is the same as for each type (20 to 100 A).
2. MOUNTING

2.1 Mounting Environment

Avoid the following conditions when selecting the mounting location:

• Ambient temperature of less than 0 °C or more than 40 °C.
 (The rated current drops when the ambient temperature exceeds 40 °C.)

• Ambient humidity of less than 5 % or more than 95 % RH.
 (Absolute humidity: MAX. W. C 29 g/m³ dry air at 101.3 kPa)

• Rapid changes in ambient temperature which may cause condensation.

• Corrosive or inflammable gases.

• Such a place where there are inflammable materials near this instrument.

• Direct vibration or shock to the mainframe.

• Water, oil, chemicals, vapor or steam splashes.

• Excessive dust, salt or iron particles.

• Excessive induction noise, static electricity, magnetic fields or noise.

• Exposure to direct sunlight.

• Excessive heat accumulation.

WARNING

- In order to prevent electric shock or instrument failure, always mount or remove this instrument after power supplied to the entire system is turned off.

- As the temperature of this instrument becomes high, mount the instrument on a non-inflammable material (metal plate, etc.).

- As this instrument generates a large amount of heat, it is cooled by circulating air by convection. Therefore, if mounted in any direction other than specified, accident or failure may result.

- When carrying this instrument, hold the heat radiation fin. In addition, always carry it with the heat radiation fin cooled.
2.2 Mounting Cautions

Take the following points into consideration when mounting this instrument.

- Mount this instrument in the direction shown below.

- Provide adequate heat radiation space so that heat does not build up.
- At least 20 mm is necessary on the left and right and at least 100 mm on the top and bottom.
- If the panel inside temperature rises due to self-generation of heat, install a forced circulation fan so that the panel inside is fully ventilated with the open air.
2.3 Dimensions

- Dimensions

* Dimensions when the connector plug (optional) is connected. When connecting the connector plug, install the thyristor by taking enough space for its wiring into account.

<table>
<thead>
<tr>
<th>Types</th>
<th>Dimensions</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 A, 30 A, 45 A and 60 A types</td>
<td></td>
<td>314.0</td>
<td>200.0</td>
<td>203.0</td>
<td>212.0</td>
</tr>
<tr>
<td>80 A and 100 A types</td>
<td></td>
<td>347.0</td>
<td>230.0</td>
<td>235.0</td>
<td>244.0</td>
</tr>
</tbody>
</table>
2. MOUNTING

Mounting dimensions
20 A, 30 A, 45 A and 60 A types
80 A and 100 A types

- **Setter (Potentiometer, Knob and Scale plate)**

Knob

![Knob diagram](image)

Potentiometer

(Resistance 5 kΩ, variation characteristic: B)

Scale plate

![Scale plate diagram](image)

Set the potentiometer full counterclockwise and combine with a scale plate.
When setting the knob on the scale plate, align the arrow on the knob with 0 on the scale plate.
2. MOUNTING

- **Fast-blow fuse (For 20 A, 30 A, 45 A and 60 A)**

 ![Diagram of fast-blow fuse (20 A, 30 A, 45 A, 60 A)]

 Code:
 - THWP-F22 (20 A)
 - THWP-F32 (30 A)
 - THWP-F42 (45 A/60 A)

 Unit: mm

- **Fast-blow fuse (For 80 A and 100 A)**

 ![Diagram of fast-blow fuse (80 A, 100 A)]

 Code:
 - THWP-F82 (80 A)
 - THWP-FA2 (100 A)

 Unit: mm

- **Step-down transformer (THWP-T01)**

 ![Diagram of step-down transformer (THWP-T01)]

 Unit: mm
2.4 Mounting Procedures

1. Prepare the holes as specified in 2.3 Dimensions.

2. Place the instrument in mounting position.

3. Insert the mounting screws into the holes, and then tighten them with a screwdriver. Customer must provide the set of screws.

<table>
<thead>
<tr>
<th>Screw size</th>
<th>Recommended tighten torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5</td>
<td>3.6 N⋅m (36 kgf⋅cm)</td>
</tr>
</tbody>
</table>

The Figure shows the type of 20 A to 60 A. However, the mounting procedure is the same as for the type of 80 A/100 A.
3. WIRING

⚠️ WARNING

To prevent electric shock or instrument failure, do not turn on the power until all the wiring is completed.

3.1 Circuit Block Diagram

- Load
 - Three-phase 400 to 440 V AC (50/60 Hz)
 - R
 - S
 - T
 - NFB
- Power terminals
 - L1 L2 L3 I1 I2 I3
- Fast-blow fuse
- CT/PT circuit
- Snubber circuit
- Controller
- UVW
- 2/T1 4/T2 6/T3
- External gradient setting
- External manual mode
- Auto mode/Manual mode transfer
- RUN/STOP transfer
- Alarm interlock release
- Alarm 1
- Alarm 2
- 24 V DC
- 4 to 20 mA DC (Auto mode)

The fast blow-fuse, CT and PT are optional.
3.2 Wiring of Main Circuit

Conduct wiring by referring to the wiring diagram and the tightening torque table.

CAUTION

- Always conduct wiring so that the R, S and T phases of 3-phase power coincide with the main circuit terminals (power side), 1/L1, 3/L2 and 5/L3 on this instrument, respectively. Otherwise the instrument may not function properly or the load may be damaged.

 \[
 \begin{align*}
 R & \rightarrow \text{Connect to the 1/L1 terminal.} \\
 S & \rightarrow \text{Connect to the 3/L2 terminal.} \\
 T & \rightarrow \text{Connect to the 5/L3 terminal.}
 \end{align*}
 \]

- Always coincide the main circuit terminals (load side), 2/T1, 4/T2 and 6/T3 on this instrument with the U, V and W phases of the load, respectively. Otherwise the instrument may not function properly or the load may be damaged.

 \[
 \begin{align*}
 2/T1 & \rightarrow \text{Connect to the U.} \\
 4/T2 & \rightarrow \text{Connect to the V.} \\
 6/T3 & \rightarrow \text{Connect to the W.}
 \end{align*}
 \]

- When controlling the primary side of the transformer, do not open its secondary side of circuit during operation. In addition, do not operate the instrument below the minimum load current.

- When controlling the primary side of the transformer, set magnetic field density of the transformer to about 0.8T (8,000-gauss). If the transformer is saturated, overcurrent flows through it to cause the thyristor to be damaged.

- Imbalance between each phase of the load may result in a large error of the input/output characteristic.

- No power switch is provided in this instrument. Therefore install the switches near the instrument, if necessary.

- To avoid noise induction, keep input signal wire of controller away from instrument power line, load lines and power lines of other electric equipment. If wiring near high-voltage power is unavoidable, use shielded wires.

- For safety, always ground the grounding terminal.

- Tighten the hexagon headed bolts on the main circuit terminals using a torque wrench. Always tighten each of them by contacting the diagonal surfaces of the wrench with those of each hexagon head.

 Recommended tool: Manufactured by TOHNICHI MFG. CO., LTD.

<table>
<thead>
<tr>
<th>Model code of adjustable type torque wrench with ratchet head</th>
<th>Socket size</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 A/30 A</td>
<td>QL3N</td>
</tr>
<tr>
<td>45 A/60 A</td>
<td>QL6N</td>
</tr>
<tr>
<td>80 A/100 A</td>
<td>QL12N</td>
</tr>
</tbody>
</table>

- Use wires satisfying the rated current capacity.

- Firmly tighten each terminal hexagon headed bolt with the tightening torque specified below. Otherwise, electric shock, fire or heat generation may result.

 Terminal hexagon bolt size and tightening torque list

<table>
<thead>
<tr>
<th>Hexagon bolt size</th>
<th>Main circuit terminal (1/L1 to 5/L3 and 2/T1 to 6/T3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 A/30 A</td>
<td>45 A/60 A</td>
</tr>
<tr>
<td>M4</td>
<td>M6</td>
</tr>
</tbody>
</table>

| Recommended tightening torque | 1.6 N·m (16.31 kgf·cm) | 3.8 N·m (38.74 kgf·cm) | 9.0 N·m (91.77 kgf·cm) |

Continued on the next page.
3. WIRING

Continued from the previous page.

- When using a solderless terminal lug, use ring type.

Ring type solderless terminal size

<table>
<thead>
<tr>
<th>Main circuit terminal (1/L1 to 5/L3 and 2/T1 to 6/T3)</th>
<th>20 A/30 A</th>
<th>45 A/60 A</th>
<th>80 A/100 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ dimension</td>
<td>4.3 mm or more</td>
<td>6.4 mm or more</td>
<td>8.4 mm or more</td>
</tr>
<tr>
<td>D dimension</td>
<td>9.5 mm or less</td>
<td>12.0 mm or less</td>
<td>22.0 mm or less</td>
</tr>
</tbody>
</table>

- Wiring of the main circuit

Table of calorific values (400 to 440V AC)

<table>
<thead>
<tr>
<th>Rated current</th>
<th>Calorific values</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 A</td>
<td>82 W</td>
</tr>
<tr>
<td>30 A</td>
<td>118 W</td>
</tr>
<tr>
<td>45 A</td>
<td>172 W</td>
</tr>
<tr>
<td>60 A</td>
<td>226 W</td>
</tr>
<tr>
<td>80 A</td>
<td>298 W</td>
</tr>
<tr>
<td>100 A</td>
<td>370 W</td>
</tr>
</tbody>
</table>
3.3 Wiring of the Step-Down Transformer

CAUTION

- Use the step-down transformer only for stepping down the voltage of power supplied to this instrument.
- Always coincide the R, S and T phases of 3-phase power with the step-down transformer terminals (primary side: L1, L2 and L3, and secondary side: I1, I2 and I3) and the power terminals, 7/l1, 8/l2 and 9/l3 of this instrument, respectively. Otherwise the instrument may not function properly or the load may be damaged.

 - **R** → Connect to the L1 terminal → I1 terminal → Connect to the 7/l1 terminal
 - **S** → Connect to the L2 terminal → I2 terminal → Connect to the 8/l2 terminal
 - **T** → Connect to the L3 terminal → I3 terminal → Connect to the 9/l3 terminal

- Use wires satisfying the rated current capacity.
- When using a solderless terminal lug, use ring type.

 Ring type solderless terminal size

 ![Ring type solderless terminal](image)

<table>
<thead>
<tr>
<th>Inner dimension</th>
<th>Power terminal (L1, L2, L3 and I1, I2, I3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ dimension</td>
<td>3.2 mm or more</td>
</tr>
<tr>
<td>D dimension</td>
<td>6.5 mm or less</td>
</tr>
<tr>
<td>Recommended tightening torque</td>
<td>0.6 to 0.9 N-m (6.1 to 9.1 kgf-cm)</td>
</tr>
</tbody>
</table>

Wiring of the step-town transformer

![Wiring diagram](image)
3.4 Wiring of Controller (Auto Mode)

When using a solderless terminal lug, use ring type.

Ring type solderless terminal size

<table>
<thead>
<tr>
<th>φ dimension</th>
<th>3.2 mm or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>D dimension</td>
<td>5.5 mm or less</td>
</tr>
<tr>
<td>Recommended tightening torque</td>
<td>0.4 N·m (4 kgf·cm)</td>
</tr>
</tbody>
</table>

On input signal change

The input signal is set as specified when ordering at the time of being unpacked. When changing the input signal, conduct the following two settings.

- Set the type of input signal by Input signal by Input signal (InSS) in Engineering mode. (See P. 46)
- Change the position of the short bar to match the input type. (See the next page.)

In addition, the input signal is divided into two pieces of hardware. The input signal in the same hardware is selectable but the input signal in the other hardware cannot be selected.
3.4.1 Wiring of the current input

For current input (0 to 20 mA DC, 4 to 20 mA DC), short terminal No.1 with terminal No.2.

3.4.2 Wiring of the voltage input or voltage pulse input

For voltage input (0 to 5 V DC, 1 to 5 V DC or 0 to 10 V DC) or voltage pulse input (0/12 V DC, 0/24 V DC), short terminal No.2 with terminal No.3.
3.4.3 Wiring of the series connection (For current input)

Current input: 0 to 20 mA DC, 4 to 20 mA DC

The number of thyristors that can be connected depends on the resistance of the temperature controller being used. For resistance of controller, see controller instruction manual.

3.4.4 Wiring of the parallel connection (For voltage input or voltage pulse input)

Voltage input: 0 to 5 V DC, 1 to 5 V DC, 0 to 10 V DC Voltage pulse input: 0/12 V DC, 0/24 V DC

The number of thyristors that can be connected depends on the resistance of the temperature controller being used. For resistance of controller, see controller instruction manual.
3.5 Wiring for Input/Output Connector

The input/output connector is used for the following wiring.

- External manual setting
- External gradient setting
- External contact input (Auto/Manual mode transfer, RUN/STOP transfer, alarm interlock release)
- Alarm output

3.5.1 Input/Output connector pin number and details

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5 V output</td>
</tr>
<tr>
<td>2</td>
<td>0 V</td>
</tr>
<tr>
<td>3</td>
<td>External gradient setting input (0 to 5 V input by the gradient setter)</td>
</tr>
<tr>
<td>4</td>
<td>External manual setting input (0 to 5 V input by the manual setter)</td>
</tr>
<tr>
<td>5</td>
<td>External contact input (DI) Auto/Manual mode transfer: Contact closed: Manual mode Contact open: Auto mode</td>
</tr>
<tr>
<td>6</td>
<td>External contact input (DI) RUN/STOP transfer: Contact closed: RUN Contact open: STOP When using RUN/STOP transfer, it is necessary to set RUN/STOP action (rSA) to “1: Used.” (See P. 46)</td>
</tr>
<tr>
<td>7</td>
<td>External contact input (DI) Alarm interlock release: Closing the contact releases the alarm interlock</td>
</tr>
<tr>
<td>8</td>
<td>Unused</td>
</tr>
<tr>
<td>9</td>
<td>24 V DC (+)</td>
</tr>
<tr>
<td>10</td>
<td>Alarm 1: Open collector output In order to output an alarm, it is necessary to select the type of alarm by Alarm 1 output logic (LGA1). (See P. 44)</td>
</tr>
<tr>
<td>11</td>
<td>Alarm 2: Open collector output In order to output an alarm, it is necessary to select the type of alarm by Alarm 2 output logic (LGA2). (See P. 44)</td>
</tr>
<tr>
<td>12</td>
<td>0 V</td>
</tr>
</tbody>
</table>
3.5.2 Caution for wiring input/output connector (plug)

- Use stranded wire of size 0.14 to 0.5 mm\(^2\) for the leadwires.
- Strip off the sheath from 8 mm from the leadwire end.

3.5.3 Wiring of external manual setter

3.5.4 Wiring of external gradient setter
3.5.5 Wiring of external contact input

Auto/Manual mode transfer
Contact closed: Manual mode
Contact open: Auto mode

RUN/STOP transfer
Contact closed: RUN
Contact open: STOP

Alarm interlock release
Contact closed: Alarm interlock release

3.5.6 Wiring of Auto mode (with gradient setter)

External gradient setter

For controller wiring, see page 16.
3.5.7 Wiring of Auto/Manual mode selection

External manual setter

Auto/Manual mode transfer
Contact closed: Manual mode
Contact open: Auto mode

THW-3

For controller wiring, see page 16.

3.5.8 Wiring of Auto/Manual mode selection (with gradient setter)

External gradient setter

External manual setter

Auto/Manual mode transfer
Contact closed: Manual mode
Contact open: Auto mode

THW-3

For controller wiring, see page 16.
3.5.9 Wiring of alarm output

A diode should be used and connected as show in the diagram, when using a relay.

![Diagram of alarm output wiring](image)

3.5.10 Wiring of contact input

The thyristor output is turned on/off by the ON/OFF signal from the controller.
3.5.11 Wiring of ON/OFF control

ON/OFF control
ON/OFF signal
(Relay contact output)

NO: Normally open
NC: Normally closed
C: Common

Low limit setter
High limit setter

THW-3

Controller
4. SETTING

This chapter describes various monitor screens, parameters or setting method. Set any mode necessary for customer’s operation. When setting the mode for the first time, set it in the order of Engineering mode and Setting mode.

4.1 Mode Menu

THW-3 has four different modes, and all settable parameters belongs to one of them. The following chart show how to access different mode.

- **Monitor mode 1:** The Input signal, Phase angle ratio, Current and other values can be monitored.
- **Monitor mode 2:** The Power frequency, External gradient, External manual and other values can be monitored.
- **Setting mode:** The parameters (Soft-start/Soft-down, Internal gradient, Set data lock and others) can be set.
- **Engineering mode:** This is the mode to set parameters which are almost unrequired to be changed hereafter as far as normally used, it set once so as to meet the operating condition.

The rated current and specifications are displayed.
(Display for approx. 2 seconds)

Display (upper): The rated current is displayed.
Display (lower): Specification is displayed. (See next page)

Press the SET key for 2 seconds.

This instrument returns to the monitor mode 1 if no key operation is performed for more than 1 minute.

If the engineering mode is locked, the engineering mode is not displayed. For details on releasing the lock, see on the page 40.
The rated current and specification display

THW-3 immediately confirms the rated current and specification following power ON.

1. The rated current display

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rated current</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20 A</td>
</tr>
<tr>
<td>30</td>
<td>30 A</td>
</tr>
<tr>
<td>45</td>
<td>45 A</td>
</tr>
<tr>
<td>60</td>
<td>60 A</td>
</tr>
<tr>
<td>80</td>
<td>80 A</td>
</tr>
<tr>
<td>100</td>
<td>100 A</td>
</tr>
</tbody>
</table>

2. Specification display

- **Fuse**
 - 0: Without fast-blow fuse
 - 1: Built-in fast-blow fuse (without microswitch)
 - 2: Built-in fast-blow fuse (with microswitch)

- **Output mode**
 - 0: Constant voltage and constant power controls are not provided.
 - 1: Constant voltage control is provided.
 - 2: Constant power control is provided.

- **Heater break alarm**
 - 0: Heater break alarm is not provided.
 - 1: Heater break alarm is provided.
4.2 Monitor Mode 1

When the power is turned on, THW-3 goes to this mode after self-diagnostics. The following items are displayed in the monitor mode 1.

- Input signal value
- Current value
- Power value
- Phase angle ratio value
- Voltage value

4.2.1 Display sequence

To go to the next monitor screen, press UP or DOWN key. To go back to the first monitor screen, keep pressing the keys until it is displayed again.

* These parameters may not be displayed depending on the specification.
4.2.2 Description of each monitor item

(1) Input signal monitor 1 (I n S 1)

Select and then display one input signal value from among three input signal values. The type of input signal to be displayed can be selected by the external contact input.

Input signal type:
- Auto set value (Value of Auto mode)
- External manual set value
- Internal manual set value

Display range: 0 to 100 %

The internal manual set value displayed on Input signal monitor 1 is that whose digits following the decimal point are truncated.

Application (Procedure required until the internal manual set value is displayed)

- Wiring of controller
- Wiring of Auto/Manual mode transfer
- Select the Setting mode.
- Unlock the Engineering mode.
- Select the Engineering mode.
- Select the contact input action.
- Set the “1: Internal manual mode ↔ Auto mode.”
- Select the Setting mode.

- When not wired, see the following page.
 - Wiring of Controller (P. 16)
 - Wiring of Auto/Manual mode selection (P. 22)

- See P. 25
- See P. 39
- See P. 25
- See P. 42
- See P. 43
- See P. 25
When necessary to display any other input signal, first select the external contact action by referring to the following table and then select the external contact.

<table>
<thead>
<tr>
<th>Contact input action</th>
<th>State of External contact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contact closed (Manual mode)</td>
</tr>
<tr>
<td></td>
<td>Contact open (Auto mode)</td>
</tr>
<tr>
<td>0: External manual mode ↔ Auto mode</td>
<td>Displays the External manual set value.</td>
</tr>
<tr>
<td>1: Internal manual mode ↔ Auto mode</td>
<td>Displays the Internal manual set value.</td>
</tr>
<tr>
<td>2: Internal manual mode (fixed)</td>
<td>Displays the Internal manual set value.</td>
</tr>
</tbody>
</table>

When no wiring of “Auto mode/Manual mode transfer” is conducted, the contact keeps opening and as a result Input signal monitor 1 displays the input signal value in the following table.

<table>
<thead>
<tr>
<th>Contact input action</th>
<th>State of contact (Contact open: Auto mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0: External manual mode ↔ Auto mode</td>
<td>Displays the Auto set value.</td>
</tr>
<tr>
<td>1: Internal manual mode ↔ Auto mode</td>
<td></td>
</tr>
<tr>
<td>2: Internal manual mode (fixed)</td>
<td>Displays the Internal manual set value.</td>
</tr>
</tbody>
</table>
(2) Phase angle ratio monitor ($\frac{\theta}{\phi}$)

Displays the phase angle of the trigger point by percentage. Phase angle is obtained by performing such computation as Soft-start/Soft-down time, Gradient setting, Output limiter setting or Base up setting to the input signal.

Display range: 0 to 100%
- Display the 0% when the phase angle is 210°.
- Display the 100% when the phase angle is 0°.

(3) Current value monitor (I)

Displays the current value (Input value of CT). The display range varies depending on the instrument specification.

Display range:
- 20 A type: 0.0 to 26.0 A
- 30 A type: 0.0 to 39.0 A
- 45 A type: 0 to 58 A
- 60 A type: 0 to 78 A
- 80 A type: 0 to 104 A
- 100 A type: 0 to 130 A

The current value monitor is not displayed when the heater break alarm function is not provided.

(4) Voltage value monitor (U)

Displays the voltage value (Input value of PT).

Display range: 0 to 500 V

The voltage value monitor is not displayed when the constant voltage control is not provided.

(5) Power value monitor (P)

Displays the power value.

Display range: 0.0 to 84.0 kW

The power value monitor is not displayed when the constant power control is not provided.
4.3 Monitor Mode 2

The following items are displayed in the monitor mode 2.
- Power frequency
- External gradient set value
- State of contact (open/closed state)
- Auto set value (value of auto mode)
- External manual set value

4.3.1 Display sequence

To go to the next monitor screen, press UP or DOWN key. To go back to the first monitor screen, keep pressing the keys until it is displayed again.
4.3.2 Description of each monitor item

1) Power frequency monitor (\(F_R\))

Displays the power frequency.
Display range: 0 to 70 Hz

The automatic power frequency detection and power frequency monitoring function is available with the THW-3. For details, see the function description (P. 56).

2) Input signal monitor 2 (\(nS\))

Displays the Auto set value (value of auto mode).
Display range: 0 to 100 %

3) External gradient set value monitor (\(EGR\))

Displays the external gradient set value.
Display range: 0 to 100 %

4) External manual set value monitor (\(ERn\))

Displays the external manual set value.
Display range: 0 to 100 %

5) Contact input state monitor (\(diSL\))

Displays the state of the contact input.
Display item:
0: Contact open
1: Contact closed

Contact input state monitor:

- **Auto/Manual mode transfer**
 0: Contact open (Auto mode)
 1: Contact closed (Manual mode)

- **RUN/STOP transfer**
 0: Contact open (STOP)
 1: Contact closed (RUN)

- **Alarm interlock release**
 0: Contact open
 1: Contact closed (alarm interlock release)
4.4 Setting Mode

In Setting mode, the following operations are possible.
• Internal gradient can be set.
• Heater break alarm set value can be set.
• Maximum load current set value for alarm, etc.

4.4.1 Display sequence

To go to the next parameter (setting item), press SET key. To go back to the first setting item, keep pressing SET keys until it is displayed again.

- Internal manual set value
- Internal gradient set value
- Soft-start time
- Soft-down time
- Maximum load current set value for alarm
- Heater break alarm 1 set value setting *
- Thyristor break-down set value setting *
- Heater break alarm 2 set value setting *
- Current limit value setting *
- Set data lock setting
- Return to internal manual set value

* These parameters may not be displayed depending on the specification.
4.4.2 Changing parameter settings

- When set the internal gradient set value to “0.50”

1. Press the SET key for 2 seconds to change to Setting mode.

2. Press the SET key to enter the Internal gradient set value.

3. Press the shift key to highlight the one decimal place on display (lower).

4. Press the DOWN key to change the number to “0.5.”
4. SETTING

5. Press the SET key to store the new value. The display goes to the next parameter.

To store a new value for the parameter, always press the SET key. A new value will not be stored without pressing SET key after the new value is displayed on the display.

After a new value has been displayed by using the UP and DOWN keys, the SET key must be pressed within one minute, or the new value is not stored and the display will return to the monitor mode 1.

If the following setting is tried to be set, no set value is registered even if the SET key is pressed. In addition, it does not go to the next parameters.

- When in zero-cross control, it is tried to set constant current control, constant voltage control or constant power control.
- When in constant current control, constant voltage control or constant power control, it is tried to set zero-cross control.

Other parameters can be set in the same way as the example above.

Every time the shift key is pressed, the high-lighted digit moves as follows.
4.4.3 Description of each parameter

(1) Internal manual set value (\(I_n^R_n \))

Use to set the Internal set value.

Setting range: 0.0 to 100.0 %
Factory set value: 0.0

(2) Internal gradient set value (\(I^G \))

Use to set the Internal gradient set value.

Setting range: 0.00 to 1.00
Factory set value: 1.00

For the gradient output characteristic, see page 50.

(3) Soft-start time (\(S_F S \))

Use to set the Soft-start time.

CAUTION
If a load generating large rush current is used, thyristor break-down may occur when no soft-start time is appropriately set. In zero-cross control, no rush current can be suppressed even if the Soft-start time is set.

Setting range: 0.0 to 99.9 seconds
Factory set value: 0.1

For the function description, see page 49.

(4) Soft-down time (\(S_F d \))

Use to set the Soft-down time.

Setting range: 0.0 to 99.9 seconds
Factory set value: 0.1

For the function description, see page 49.
(5) Maximum load current set value for alarm (IMR01V02-E1)

Use to set the maximum heater current value (maximum load current value) for Heater break alarm. The maximum load current value means a current value which flows through the heater at an output of 100 % (phase angle: 0°). After the wiring is complete, check a current value which flows through the heater at an output of 100 % (phase angle: 0°) on the current monitor (see P. 30).

Phase angle can be checked on the Phase angle ratio monitor (see P. 30).

- Always set the maximum load current value if the heater break alarm function is provided.
- If the maximum current value which flows through the heater changes due to heater secular change or deterioration, change the maximum load current value.

Setting range:
20 A type: 0.0 to 22.0 A
30 A type: 0.0 to 33.0 A
45 A type: 0 to 50 A
60 A type: 0 to 66 A
80 A type: 0 to 88 A
100 A type: 0 to 110 A

Factory set value:
20 A type: 20.0
30 A type: 30.0
45 A type: 45
60 A type: 60
80 A type: 80
100 A type: 100

This parameter is not displayed when the heater break alarm function is not provided.

For the application, see 5.11 Heater Break Alarm 1 (HBA1), Heater Break Alarm 2 (HBA2) and Thyristor Break-down Alarm (see P. 57).

(6) Heater break alarm 1 set value setting (IMR01V02-E1)

Use to set the heater break alarm 1 set value. For the heater break alarm 1 set value, make the setting as follows.

When the control method is Phase Control, RKC recommends:
Set the heater break set value to approximately 20 % of the maximum load current value for heater break alarm Type 1.
Set the heater break set value to approximately 5 % of the maximum load current value for heater break alarm Type 2.

When the control method is Zero-cross Control, RKC recommends:
Set the heater break alarm set value to approximately 80 % of the reading of current transformer input. Set the heater break alarm set value to a slightly smaller value to prevent a false alarm when power supply variation is large. Set the heater break alarm set value to a slightly larger value to detect a failure of one heater when more than one heaters are connected in parallel. But the set value should be less than the maximum reading of current transformer input.

Setting range: 0 to 100 % (0: Heater break alarm 1 unused)
Factory set value: 20

This alarm value is the deviation setting when the heater break alarm 1 type is type 1.
This parameter is not displayed when the heater break alarm function is not provided.
For the function description, see P. 57.
(7) Thyristor break-down set value setting (\(\overline{Hb} \))

Use to set the thyristor break-down set value. For the thyristor break-down set value, make the setting as follows.

When the control method is Phase Control, RKC recommends:
- Set the heater break set value to approximately 20% of the maximum load current value for heater break alarm Type 1.
- Set the heater break set value to approximately 5% of the maximum load current value for heater break alarm Type 2.

When the control method is Zero-cross Control, RKC recommends:
- Set the heater break set value to approximately 30% of the maximum load current value.

Setting range: 0 to 100% (0: Thyristor break-down alarm unused)

Factory set value: 20

- This alarm value is the deviation setting when the heater break alarm 1 type is type 1.
- This parameter is not displayed when the heater break alarm function is not provided.
- For the function description, see P. 57.

(8) Heater break alarm 2 set value setting (\(\overline{Hb} \))

Use to set the heater break alarm 2 set value. For the heater break alarm 2 set value, make the setting as follows.

When the control method is Phase Control and heater break alarm Type 1 is selected, RKC recommends:
- Set the value must be equal or less than the heater break alarm 1 set value.

When the control method is Phase Control and heater break alarm Type 2 is selected:
- For the type 2, this item is not available. Set the “0: Heater break alarm 2 unused.”

When the control method is Zero-cross Control is selected:
- For the zero-cross control, this item is not available. Set the “0: Heater break alarm 2 unused.”

Setting range: 0 to 100% (0: Heater break alarm 2 unused)

Factory set value: 15

- This alarm value is the deviation setting when the heater break alarm 2 type is type 1.
- This parameter is not displayed when the heater break alarm function is not provided.
- For the function description, see P. 57.
(9) **Current limiter value setting (\(\mathcal{L} \))**

Use to set the current limiter value.

Setting range:
- 20 A type: 0.0 to 22.0 A
- 30 A type: 0.0 to 33.0 A
- 45 A type: 0 to 50 A
- 60 A type: 0 to 66 A
- 80 A type: 0 to 88 A
- 100 A type: 0 to 110 A

Factory set value:
- 20 A type: 22.0
- 30 A type: 33.0
- 45 A type: 50
- 60 A type: 66
- 80 A type: 88
- 100 A type: 110

If a current limit value is set to its maximum value, the current limit function is deactivated. Factory set value is deactivation state.

This parameter is not displayed when the heater break alarm function is not provided. For the function description, see P. 56.

(10) **Set data lock setting (\(\mathcal{L} \mathcal{L} \))**

The Set Lock Function limits access of unauthorized personnel to the parameter and prevents parameter change by mistake. Parameters of Setting mode and Engineering mode can be locked.

Setting range:

![Set data lock diagram](image)

Factory set value: 0000

If the parameters of Engineering mode are locked, those parameters are not displayed.
4.5 Engineering Mode

Parameters in Engineering mode should be set according to the application before setting any parameter related to operation. Once the Parameters in the Engineering mode are set correctly, those parameters are not necessary to be changed for the same application under normal conditions.

All parameters of the engineering mode are displayed regardless of the instrument specification.

4.5.1 Transfer to engineering mode

When changing to the Engineering mode, it is necessary to unlock the Engineering mode lock.

1. Change to setting mode.

![Setting mode (Internal manual set value)](image)

2. Press the SET key several times to change to the set data lock setting.

![Set data lock setting](image)

3. Press the shift key to highlight the tens digit of display (lower).

![Set data lock setting](image)
4. Press the UP key to change 0 to 1 in the tens digit.

5. Press the SET key to unlock the engineering mode. The display goes to the first parameter in engineering mode.

6. Press the shift key while pressing the SET key to change to the engineering mode. The display goes to the function block 24.
4.5.2 Display sequence

Setting items are classified into groups (function block: F□□) within the Engineering mode.

- **Change to the function block (F□□):** To go to the next function block, press UP or DOWN keys.
- **Change to parameter:** To go to the next parameter, press SET key.

![Diagram of Display sequence](image-url)
4.5.3 Description of each parameter

For details on changing the numeric value, see 4.2.2 Procedure for changing numerical value (P. 34).

(1) Function block 24 (F 24)
■ Contact input action (d l 5 l)
Use to select the contact input action of auto/manual mode transfer. This selection also affects the display of the input signal monitor 1.

Setting item: 0: External manual mode ↔ Auto mode
1: Internal manual mode ↔ Auto mode
2: Internal manual mode (fixed)

Factory set value: 0

Relationship between Contact input action and Contact input state:

<table>
<thead>
<tr>
<th>Contact input action</th>
<th>Contact input state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed</td>
<td>Open</td>
</tr>
<tr>
<td>0: External manual mode ↔ Auto mode</td>
<td>External manual mode</td>
</tr>
<tr>
<td>1: Internal manual mode ↔ Auto mode</td>
<td>Internal manual mode</td>
</tr>
<tr>
<td>2: Internal manual mode (fixed)</td>
<td>Internal manual mode</td>
</tr>
</tbody>
</table>

(2) Function block 30 (F 30)
■ Output mode for phase control (d 5)
Use to select the output method for phase control with linearity load (resistor load).

When constant current control is selected, no normal operation is performed if the rated current of thyristor differs from that maximum load current flowing through the heater. In such a case, set the gradient so that the maximum load current value which flows through the heater is obtained at an input signal of 100 %. (For the setting method, see P. 54.)

Any output mode not specified when ordering is invalid even if set.

Output mode setting is invalid when zero-cross control is selected.

The output mode is invalid in zero-cross control. However, it is impossible to go to the next parameter if not set to any one of 0, 1, and 2.

Setting item: 0: Proportional phase angle to input
1: Proportional voltage to input
2: Proportional square voltage (electric power) to input
3: Constant current control
4: Constant voltage control
5: Constant power control

Factory set value: Factory set value varies depending on the instrument specification.

For the output characteristic, see P. 53.
4. SETTING

Alarm 1 output logic (LGR1)

Alarm 2 output logic (LGR2)

Use to select the output logic of the alarm 1 or alarm 2. (open-collector output)

Setting item:

0: No output
1: Heater break alarm 1 (ON at alarm output)
2: Thyristor break-down alarm (ON at alarm output)
3: Heater break alarm 2 (ON at alarm output)
4: Logical OR of Heater break alarm 1 and Thyristor break-down alarm (ON at alarm output)
5: Logical OR of Heater break alarm 1, Thyristor break-down alarm and Heater break alarm 2 (ON at alarm output)
6: Logical OR of FAIL alarm, Power frequency error, Negative phase sequence, Over current and Fuse break (ON at alarm output)
7: Logical OR of all alarms (ON at alarm output)
8: Heater break alarm 1 (OFF at alarm output)
9: Thyristor break-down alarm (OFF at alarm output)
10: Heater break alarm 2 (OFF at alarm output)
11: Logical OR of Heater break alarm 1 and Thyristor break-down alarm (OFF at alarm output)
12: Logical OR of Heater break alarm 1, Thyristor break-down alarm and Heater break alarm 2 (OFF at alarm output)
13: Logical OR of FAIL alarm, Power frequency error, Negative phase sequence, Over current and Fuse break (OFF at alarm output)
14: Logical OR of all alarms (OFF at alarm output)

Factory set value: 0

* The following alarms are optional. Any alarm not specified when ordering is not activated even if set.
 * Heater break alarm 1
 * Over current
 * Heater break alarm 2
 * Thyristor break-down alarm
 * Fuse break

Function block 45 (F 4 5.)

Number of heater break alarm 1 delay times (HbE 1)

Use to set the number of delay times of heater break alarm 1 and thyristor break-down alarm. This setting is common to both heater break alarm 1 and thyristor break-down alarm.

Setting item: 1 to 99 times
Factory set value: 30

* This item cannot be used when the heater break alarm function is not provided. The data is invalid.
* For the function description, see P. 57.
4. SETTING

- **Heater break alarm 1 type (RS1)**
 Use to select the type of heater break alarm 1 in the phase control.

 Setting item:
 - 0: Type 1 (Deviation alarm)
 - 1: Type 2 (Absolute value alarm)

 Factory set value: 0

 - This item cannot be used when the heater break alarm function is not provided. Invalid even when the data is set.
 - This data is invalid when zero-cross control is selected.
 - For the function description, see P. 57.

- **Alarm interlock (I L S)**
 Use to select Use/Unuse of alarm interlock function.

 Setting item:
 - 0: Unused
 - 1: Use

 Factory set value: 0

 - For the function description, see P. 57.
 - For the release method of alarm interlock, see 5.17 Contact Input (DI) Function (P. 65).

- **Function block 46 (F46.)**

- **Number of heater break alarm 2 delay times (HbCZ2)**
 Use to set the number of delay times of heater break alarm 2.

 Setting item: 1 to 999 times

 Factory set value: 300

 - This item cannot be used when the heater break alarm function is not provided. The data is invalid.

 - For the function description, see P. 57.

- **Heater break alarm 2 type (RS2)**
 Use to select the type of heater break alarm 2 in the phase control.

 Setting item:
 - 0: Type 1 (Deviation alarm)
 - 1: Type 2 (Absolute value alarm)

 Factory set value: 0

 - This item cannot be used when the heater break alarm function is not provided. Invalid even when the data is set.
 - This data is invalid when zero-cross control is selected.
 - For the function description, see P. 57.
(5) Function block 51 (F 5 l)

■ Control method (C o n r)

Use to select the control method.

Setting item:

0: Phase control
1: Zero-cross control *

* When in constant current control, constant voltage control or constant power control, no zero-cross control can be set. It cannot be registered even if the SET key is pressed after the corresponding number is selected. Not to be changed to the next parameter.

Factory set value: 0

■ RUN/STOP action (F 5 R)

Use to select Use/Unuse of RUN/STOP transfer function.

Setting item:

0: Unused
1: Use

Factory set value: 0

For the function description, see P. 69.

■ Input signal (I n S S)

Use to select the type of input signal.

For a voltage pulse input of 0/12 V DC or 0/24 V DC, it is not necessary to be changed as the setting is valid even if set to either “0” or “1.”

The current or voltage input is selected by a short bar on the input terminals. (See P. 17)

Setting item:

0: 0 to 20 mA DC, 0 to 5 V DC, 0 to 10 V DC *, 0/12 V DC, 0/24 V DC
1: 4 to 20 mA DC, 1 to 5 V DC, 0/12 V DC, 0/24 V DC

* As the hardware differs for 0 to 10 V DC, it is impossible to change to any input signal other than the voltage pulse input.

Factory set value: Factory set value varies depending on the instrument specification.

- **Hardware 1**
 - Current input 0 to 20 mA DC
 - Voltage input 0 to 5 V DC
 - Current input 4 to 20 mA DC
 - Voltage input 1 to 5 V DC
 - Voltage pulse input 0/12 V DC

- **Hardware 2**
 - Voltage input 0 to 10 V DC
 - Voltage pulse input 0/12 V DC
 - Voltage pulse input 0/24 V DC

It is possible to change the input signal in the same hardware.

It is impossible to change to the input signal of different hardware.
(6) Function block 52 (F52)

- **Output limiter (high)** (OLH)

 Use to set the high limit value of output.

 Setting item: 0.0 to 100.0 %
 Factory set value: 100.0

 - Output limiter (high) value must be equal or higher than Output limiter (low).
 - For the function description, see P. 50.

- **Output limiter (low)** (OLL)

 Use to set the low limit value of output.

 Setting item: 0.0 to 100.0 %
 Factory set value: 0.0

 - Output limiter (low) value must be equal or lower than Output limiter (high).
 - The Base-up function cannot be used together. The output limiter [low] function is effective only when the Base-up setting is set to 0.0.
 - For the function description, see P. 50.

- **Output limiter (high) at operation start** (OLH)

 Use to set the high limit value of output at operation start. Output limiter (high) value at operation start must be lower than output limiter (high).

 Setting item: 0.0 to 100.0 %
 Factory set value: 50.0

 - For the function description, see P. 51.

- **Output limiter (high) time at operation start** (OLT)

 Use to set the high limit time of output at operation start.

 Setting item: 0.0 to 600.0 seconds
 Factory set value: 0.0

 - For the function description, see P. 51.

- **Base-up set value** (BUP)

 Use to set the base-up set value (output bias) of output.

 Setting item: 0.0 to 100.0 %
 Factory set value: 0.0

 - The base-up set value is effective only when the output limiter (low) is set to 0.0.
 - The base-up set value will not exceed the output limiter (high).
 - For the function description, see P. 52.
(7) Function block 60 (F60)

Function block 60 cannot be used.

(8) Function block 91 (F91)

Only displayed for the F91 function block.

■ ROM version

Display the version of loading software.

■ Integrated operating time [upper 2 digits] (H)

Display the integrated operating time (upper 2 digits) of instrument.

Details of display: 0 to 99 (Resolution of display: 10,000 hours)

Up to 999,999 from 0 including the upper and lower digits can be displayed.

■ Integrated operating time [lower 4 digits] (L)

Display the integrated operating time (lower 4 digits) of instrument. However, as the integral time is increments by 1 when the power is turned on or off.

If the total integrated operating time exceeds 9,999 hours, these digits move to the integrated operating time display [upper 2 digits] (H).

Details of display: 0 to 9999 (Resolution of display: 1 hours)
5. FUNCTIONS

5.1 Control Method

■ Phase control

Phase control is to continuously control electric power supplied to a load by changing phase angle θ of AC voltage applied to the load. Each half-cycle has ON and OFF time.

■ Zero-cross control (Continuous)

Continuous Zero-cross control is to control electric power supplied to a load by turning the power supply voltage ON and OFF at the point of 0 V AC so that the high frequency noise can be suppressed compared with phase control. This on and off time is typically measured in milliseconds.

■ Zero-cross control (Input synchronous type)

Input Synchronous type Zero-cross control is to turn the power supply ON and OFF synchronously with the pulse signal from a controller. This on and off time is typically measured in seconds.

5.2 Ramp Function (Soft-Start/Soft-Down Function)

Soft-start/soft-down function gradually ramps up/down the output voltage to the demand level over the set time to prevent a sudden change in load or voltage. The soft-start/soft-down time sets a period of time from 0 to 100 % or 0 to 100 %.

If a load generating large rush current is used, thyristor break-down may occur when no soft-start time is appropriately set.

In zero-cross control, no rush current can be suppressed even if the soft-start time is set.
5.3 Gradient Setting Function

Gradient setting is a multiplier to be applied to output voltage to the load to adjust the output value depending on an application. The following two types of gradient setting are available.

- Internal gradient setting set by the THW-3 front keys
- External gradient setting set by the external gradient setter (external potentiometer)

![Gradient output characteristics graph]

The output value is adjusted by Gradient Setting Function as follows.

- \((\text{Output voltage calculated by Auto mode}) \times (\text{Internal gradient setting}) \times (\text{External gradient set value})\)
- \((\text{Output voltage calculated by Auto mode}) \times (\text{Internal gradient set value})\)
- \((\text{Output by manual set value}) \times (\text{Internal gradient set value}) \times (\text{External gradient set value})\)

If it is necessary to make only the external gradient set value valid, set the internal gradient set value to 1.00.

5.4 Output Limiter (High and Low)

This function limits the output range. Output limiter function is related to other functions.

- Output limiter (high) and (low) have priority to the output value\(^1\) calculated with Gradient Setting function. The maximum output from the instrument will not exceed the output limiter (high) and the minimum output will not go below the output limiter (low).
- Output limiter (high) has priority to the output value\(^2\) calculated with Gradient Setting and Base-Up setting function. The maximum output from the instrument will not exceed the output limiter (high).
- When output limiter (low) is not set to zero (0.0), the base-up setting function is invalid.

\(^1\) Output value = (Input signal or manual set value) \times (Gradient set value)
\(^2\) Output value = (Input signal or manual set value) \times (Gradient set value) + (Base-up set value)
5.5 Output Limiter (High) at Operation Start

This is the function used to restrict the output for any preset time [output limiter (high) time at the time of start] when power is turned on. It is possible to lessen rush current by using this function. The use of this function is effective for any heater (halogen lamp, platinum, tungsten, molybdenum, etc.) through which rush current flows.

![Graph](image)

Priority order of output limiter

If the output limiter (high) at the time of start is set to any value larger than the output limiter (high), the latter has priority over the former.

![Graph](image)

If the output limiter (high) at the time of start is set to any value smaller than the base-up set value or output limiter (low), the former has priority over the latter.

![Graph](image)

Continued on the next page.
Continued from the previous page.

If the output limiter (high) at the time of start is set to any value larger than the current limiter value, the latter has priority over the former.

![Diagram showing output limiter and base-up setting](image)

5.6 Base-Up Setting Function

Base-up setting function adds positive bias to the output value calculated with gradient setting function.

- Base-up setting is valid only when output limiter (low) is set to zero (0.0).
- Output limiter (high) has priority to the output value \(\ast \) calculated with Gradient Setting and Base-Up setting function. The maximum output from the instrument will not exceed the output limiter (high).

\[\ast \text{ Output value} = (\text{Input signal or manual set value}) \times (\text{Gradient set value}) + (\text{Base-up set value}) \]
5.7 Output Mode for Phase Control

When phase control is selected for a linearity load (resistance load), one of the following six output types can be selected. The factory set value is proportional square voltage (electric power) to input. (The output mode setting is invalid when the control method is zero-cross control.)

- **Proportional phase angle to input**
- **Proportional voltage to input**
- **Proportional square voltage (electric power) to input**
- **Constant current control**
- **Constant voltage control**
- **Constant power control**

- Constant current, Constant voltage and Constant power controls are optional.
(1) Constant current control

This is the function used to keep the output current constant in proportion to the input signal. This function is effective when a heater with large resistance changes caused by temperature variations is used (such as tantalum, superkanthal, tungsten, platinum, or molybdenum). The maximum output current when the constant current control function is used coincides with the rated current in the thyristor specification.

<table>
<thead>
<tr>
<th>Operating condition</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage variation ±10 %</td>
<td>±2 % of full scale</td>
</tr>
<tr>
<td>Load variation 2 times</td>
<td></td>
</tr>
</tbody>
</table>

- Caution for using constant current control function

If the rated current of thyristor differs from that maximum load current flowing through the heater, compensate for the difference by setting the gradient. If there is the difference, a section where control is disabled may come into existence. A compensation example when there is a difference between the currents flowing through the thyristor and the heater is shown in the following.

Example: When used in the following condition
- Rated current of Thyristor: 30 A
- Maximum load current of heater: 15 A
- Input signal from controller: 4 to 20 mA DC
- Soft-start time setting: 0.0 seconds

The soft-start function is activated during four cycles from load operation start even at a soft-start time of 0.0 seconds.

When used without setting the gradient, the maximum heater load current becomes 15 A at an input signal of 12 mA. In this case, control is disabled if the input signal exceeds 12 mA.

![Graph showing constant current control](image)

Continued on the next page.
Continued from the previous page.

In this case, set the gradient to 50 % so that the maximum heater load current will become 15 A at an input signal of 20 mA. The gradient is valid even if internally set or set by the external gradient setter.

![Constant current control diagram]

(2) Constant voltage control

This is a control method of compensating power supply voltage and load variations so that no output voltage changes while in control.

<table>
<thead>
<tr>
<th>Operating condition</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage variation ±10 %</td>
<td>±2 % of full scale</td>
</tr>
<tr>
<td>Load variation 2 times</td>
<td></td>
</tr>
</tbody>
</table>

(3) Constant power control

This is a control method of outputting the root mean square power value proportional to the input signal even if there are power supply voltage and load variations while in control. This is suitable for heater control such as by silicon carbide or silicon unit which increases its resistance value due to temperature and secular changes.

<table>
<thead>
<tr>
<th>Operating condition</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage variation ±10 %</td>
<td>±4 % of full scale</td>
</tr>
<tr>
<td>Load variation 2 times</td>
<td></td>
</tr>
</tbody>
</table>

The soft-start function is activated during four cycles from load operation start even at a soft-start time of 0.0 seconds.
5.8 Current Limiter Function

This is the function of limiting a measured current value to a value not exceeding the preset current limit value. A current value is measured for each constant cycle and then the maximum phase angle not exceeding the current limit value is calculated from the above current value thus measured. If the phase angle at that current output is larger than the maximum phase angle calculated, the current is output at the maximum phase angle to restrict that current. The maximum phase angle is calculated during a time period of 0.1 seconds from the start of load operation, and the current limit function is activated after the maximum phase angle is calculated.

If a load through which large rush current flows is used, the current limit function cannot restrict the above current. In this case, use the current limit function together with the soft-start function.

Even at a soft-start time of 0.0 seconds, the soft-start function is activated in order to calculate the maximum phase angle during a time period of 0.1 seconds from the start of load operation.

If a current value exceeds “Current limit value + Differential gap (0.5 A or 1.0 A) *” due to voltage variations or load resistance changes while the current limit function is being activated, the maximum phase angle is immediately re-calculated to restrict it within a cycle of 2.5 from the time when it exceeds “Current limit value + Differential gap.”

* Differential gap 0.5 A: 20 A, 30 A types
 Differential gap 1 A: 45 A, 60 A, 80 A and 100 A types

If a current limit value is set to its maximum value, the current limit function is deactivated.

The current limiter function cannot be used when zero-cross control is selected.

5.9 Automatic Power Frequency Detection and Power Frequency Monitoring Function

■ Automatic power frequency detection

The instrument automatically detects a power supply frequency (50 Hz or 60 Hz) when the power is turned on.

Detection range: 50 Hz: 45.0 to 54.9 Hz 60 Hz: 55.0 to 64.9 Hz

Action on occurrence of error: FREQ lamp is lit. Thyristor output is turned off.

■ Power frequency monitoring function

This function monitors the power supply frequency and when it goes out of the detection range, the error message display appears.

Detection range: 50 Hz: 45.0 to 54.9 Hz 60 Hz: 55.0 to 64.9 Hz

Action on occurrence of error: FREQ lamp is lit. Thyristor output is turned off.

(The output can be turned ON when the error is canceled.)
5. FUNCTIONS

5.10 Alarm Interlock Function

The alarm interlock function is used to hold the alarm state even if the power frequency or CT input value is out of the alarm zone after its entry into the alarm zone once. Power frequency error (FREQ), heater break alarm 1 (HBA1), thyristor breakdown alarm (THY. B) and heater break alarm 2 (HBA2) can be interlocked.

Indication lamp: This lamp continues lighting until the alarm is released.
Alarm output: The alarm output continues being output until the alarm is released.
Alarm interlock release: The Alarm interlock can be released by the external contact signal.

5.11 Heater Break Alarm 1 (HBA1), Heater Break Alarm 2 (HBA2) and Thyristor Break-Down Alarm Functions

The heater break alarm (HBA) and thyristor break-down alarm monitors the current flowing through the load by a dedicated current transformer (CT). The THW-3 compares the measured value with the set values, and detects a fault in the heating circuit. In addition, there are several types of alarms depending on control methods and applications of these alarms.

Read this chapter carefully to choose an suitable method and set an appropriate set value.

5.11.1 Number of alarm delay times

The alarm delay function is that which delays the occurrence of alarm in order to prevent alarm malfunctioning. When an alarm condition becomes ON status, the output is suppressed until the preset number of sampling times elapses. After the preset number of sampling times elapses, if the alarm output is still ON status, the output will be produced. In addition, if the alarm state is released while the alarm delay function is being activated, the alarm output is not turned on.

When the alarm types are the Heater break alarm 1 and Thyristor break-down alarm:
Alarm state > 5 sampling cycles * × Number of alarm delay times (1 to 99 times)

When the alarm is the heater break alarm 2:
Alarm state > 5 sampling cycles * × Number of alarm delay times (1 to 999 times)
* It is so designed that the alarm output is turned on when the alarm state corresponding to five sampling times continues even with the number of alarm delay times not set.

Zero-cross control
5.11.2 Heater break alarm for phase control (Type 1)

Type 1 can be used as follows by using three heater break alarm set values.
(See Application 1 [P. 61].)

Heater break alarm 1 (HBA1) set value:
The alarm can be output when a heater break occurs by setting the heater break alarm set value.

Thyristor break-down set value:
It is possible to output an alarm when a thyristor element is shorted or broken by setting the thyristor breakdown set value.

Heater break alarm 2 (HBA2) set value:
This alarm set value can be used as an auxiliary alarm.
For example, it can be used as a heater deterioration alarm if set to any value slightly smaller than the heater break alarm set value to output the alarm before a heater break occurs when the load current decreases due to heater deterioration, etc.

The heater break alarm of Type 1 cannot be used for heat generation substances such as noble metals* making large resistance changes with temperature variations.
In addition, it cannot be used for heat generation substances such as silicon carbide making resistance changes with temperature variations and a lapse of time.
* Noble metals (Such as platinum, molybdenum, tantalum, tungsten, or superkanthal)

Type 1 cannot be used for any load (such as lamp heater) whose resistance change due to a change in temperature is large.

Type 1 cannot be used for any power supply waveforms other than a sine waveform.

(1) How alarm is activated

- When heater current does not flow (Heater break, malfunction of the control device, etc.)
 When the phase angle is equal to or more than 15% and the current transformer (CT) input value is equal to or less than the heater break alarm (HBA) set value for the preset number of consecutive sampling cycles, an alarm status is produced. **However, in order to prevent malfunctioning, it is so designed that no heater break alarm occurs at a phase angle of less than 15% (less than 15% of maximum load current).**

- When heater current can not be turned off (Thyristor break-down or permanent damage)
 When the current transformer (CT) input value is equal to or greater than the heater break alarm set value* for the preset number of consecutive sampling cycles, an alarm status is produced.
* Thyristor break-down set value or Heater break alarm 2 (HBA2) set value

 The alarm will be turned off when the current transformer (CT) input value goes in and stays at non-alarm range for five consecutive cycles.
 (However, excepting a case where the alarm interlock function is used.)
(2) Setting the Heater break alarm

When using the heater break alarm, it is necessary to set the maximum load current set value for alarm (MAXC). (See P. 37)

The following table shows the amount of current to be reduced when one heater is broken with heaters parallel connected. It shows how much current is reduced when one heater is broken at the output (phase angle) shown in the table. Set the heater break alarm set value by referring to the amount of current reduced.

Delta connected

<table>
<thead>
<tr>
<th>Number of parallel connection of heater</th>
<th>Output (Phase angle)</th>
<th>Reduction of %</th>
</tr>
</thead>
<tbody>
<tr>
<td>When heaters are not parallel connected</td>
<td>14 % (180 °)</td>
<td>Reduction of 6 %</td>
</tr>
<tr>
<td></td>
<td>29 % (150 °)</td>
<td>Reduction of 16 %</td>
</tr>
<tr>
<td></td>
<td>42 % (120 °)</td>
<td>Reduction of 26 %</td>
</tr>
<tr>
<td></td>
<td>57 % (90 °)</td>
<td>Reduction of 29 %</td>
</tr>
<tr>
<td></td>
<td>71 % (60 °)</td>
<td>Reduction of 31 %</td>
</tr>
<tr>
<td></td>
<td>86 % (30 °)</td>
<td>Reduction of 31 %</td>
</tr>
<tr>
<td></td>
<td>100 % (0 °)</td>
<td>Reduction of 28 %</td>
</tr>
<tr>
<td>When two heaters are parallel connected to each phase</td>
<td>Reduction of 3 %</td>
<td>Reduction of 7 %</td>
</tr>
<tr>
<td></td>
<td>Reduction of 11 %</td>
<td>Reduction of 13 %</td>
</tr>
<tr>
<td></td>
<td>Reduction of 15 %</td>
<td>Reduction of 16 %</td>
</tr>
<tr>
<td>When three heaters are parallel connected to each phase</td>
<td>Reduction of 2 %</td>
<td>Reduction of 4 %</td>
</tr>
<tr>
<td></td>
<td>Reduction of 7 %</td>
<td>Reduction of 9 %</td>
</tr>
<tr>
<td></td>
<td>Reduction of 10 %</td>
<td>Reduction of 11 %</td>
</tr>
</tbody>
</table>

In order to prevent malfunctioning, it is so designed that no heater break alarm occurs at an phase angle of less than 15 % (less than 15 % of maximum load current).

Star connected (Y connected)

<table>
<thead>
<tr>
<th>Number of parallel connection of heater</th>
<th>Output (Phase angle)</th>
<th>Reduction of %</th>
</tr>
</thead>
<tbody>
<tr>
<td>When heaters are not parallel connected</td>
<td>Reduction of 6 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduction of 16 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduction of 26 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduction of 29 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduction of 31 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduction of 31 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduction of 28 %</td>
<td></td>
</tr>
<tr>
<td>When two heaters are parallel connected to each phase</td>
<td>Reduction of 3 %</td>
<td>Reduction of 7 %</td>
</tr>
<tr>
<td></td>
<td>Reduction of 11 %</td>
<td>Reduction of 13 %</td>
</tr>
<tr>
<td></td>
<td>Reduction of 15 %</td>
<td>Reduction of 16 %</td>
</tr>
<tr>
<td>When three heaters are parallel connected to each phase</td>
<td>Reduction of 2 %</td>
<td>Reduction of 4 %</td>
</tr>
<tr>
<td></td>
<td>Reduction of 7 %</td>
<td>Reduction of 9 %</td>
</tr>
<tr>
<td></td>
<td>Reduction of 10 %</td>
<td>Reduction of 11 %</td>
</tr>
</tbody>
</table>

Continued on the next page.
In order to prevent malfunctioning, it is so designed that no heater break alarm occurs at a phase angle of less than 15 % (less than 15 % of maximum load current).

Explanation of Table 1 and Table 2

Example: When heaters are not parallel connected with these heaters star-connected:

(See table 2.)

Heater break alarm 1 (HBA1) is set at 20 % before factory shipment. The heater break alarm is turned on when the current reduces by more than 20 % from the computed heater current value at each output (phase angle) as shown in Table 2.

In table 2, the current reduces by more than 20 % with one heater broken when the output is larger than 29 % (phase angle: 150 °).
Setting example of Heater break alarm

Application: Heater with the specification of a maximum load current of 100 A
Three-phase star connected
The heater is not connected in parallel.
The set value of heater break alarm 1 (HBA1) is used for heater break detection.
(The heater break alarm needs to be output at an output of more than 15 %.)
The set value of heater break alarm 2 (HBA2) is used for heater deterioration detection.

Set the related parameters as follows.

Parameter in Setting mode

- Maximum load current set value for alarm (MAXC) *: 100 A
 - Always set the maximum heater current value. (See P. 37)
- Heater break alarm 1 set value setting (HBA1): 8 %
 When the heater break alarm is detected at an output of more than 15 %, check for a value near an output of 15 % by referring to Table 2. From Table 2, an output of 14 % (phase angle: 180 °) is very close to an output of 15 %. Therefore, set 8 % corresponding to the amount of current reduced at an output of 14 % (phase angle: 180 °) as the set value of heater break alarm 1 (HBA1).
- Heater break alarm 2 set value setting (HBA2): 6 %
 As the heater deterioration alarm must detect the degree of deterioration before the heater break alarm occurs, set the set value of heater break alarm 2 (HBA2) to any value smaller than the set value of heater break alarm 1 (HBA1). Here, the former is set at 6 % as an example.
- Thyristor break-down set value setting (THb): 0 % [Thyristor break-down alarm unused]

The computed current value used for heater break alarm (HBA) determination point

The computed current value used for heater break alarm 1 (HBA1) determination point
= (Maximum load current set value) × (Heater break alarm 1 (HBA1) set value)
= 100 A × 8 % = 8 A
 Heater break alarm 1 (HBA1) current value 8 A

The computed current value used for heater break alarm 2 (HBA2) determination point
= (Maximum load current set value) × (Heater break alarm 2 (HBA2) set value)
= 100 A × 6 % = 6 A
 Heater break alarm 2 (HBA2) current value 6 A

The current value (8 Ampere) of heater break alarm 1 (HBA1) is set below the computed heater current value. The current value (6 Ampere) of heater break alarm 2 (HBA2) is set above and below the computed heater current value. (See the graph of next page.)

Parameter in Engineering mode

- Alarm 1 output logic (LGA1): 1 [Heater break alarm 1 (ON at alarm output)]
- Alarm 2 output logic (LGA2): 3 [Heater break alarm 2 (ON at alarm output)]
- Number of heater break alarm 1 delay times (HbC1): 1 time
- Heater break alarm 1 type (AS1): 0 [Type 1 (deviation alarm)]
- Alarm interlock (ILS): 0 [Unused]
- Number of heater break alarm 2 delay times (HbC2): 1 time
- Heater break alarm 2 type (AS2): 0 [Type 1 (deviation alarm)]
- Control method (ConT): 0 [Phase control]

Continued on the next page.
The set value of heater break alarm 2 (HBA2) is set above and below the computed heater current value (deviation high/low alarm).
The set value (above) of heater break alarm 2 (HBA2) is an alarm on the thyristor break-down side.

This setting example shows the operation performed under the following ideal condition. The actual operation differs depending on power supply voltage and load variations. Therefore, set the value meeting the customer’s operating condition.
- Power supply voltage: Constant
- Load variation: None
- Balanced three-phase load

How alarm is checked
If an alarm occurs, the indication lamp (HBA1/HBA2) at the front lights.
In addition, the alarm signal is output from the alarm 1 or 2 of the input/output connector.
(3) Thyristor break-down alarm

The thyristor break-down alarm is turned on when the computed heater current value is larger than the thyristor break-down set value set at each output (phase angle).

\[
\text{Thyristor break-down alarm is turned on when } \geq \text{Computed heater current value} + (\text{Maximum load current set value (A)} \times \text{Thyristor break-down set value [20 %]})
\]

When using the thyristor break-down alarm, it is also necessary to set the maximum load current set value for alarm (MAXC). (See P. 37)

Conduct the setting by referring to ■ Setting example of Heater break alarm (P. 61).

How alarm is checked
If an alarm occurs, the indication lamp (THY.B) at the front lights.
In addition, the alarm signal is output from the alarm 1 or 2 of the input/output connector.
5.11.3 Heater break alarm for phase control (Type 2)

Type 2 corresponds to a heater break alarm when one heater is used. (See Application)

Use the heater break alarm of Type 2 when a noble metal heater with large resistance changes caused by temperature variations is used.

No type 2 can be used when two or more heaters are used in parallel connection.

How alarm is activated

- When heater current does not flow (Heater break, malfunction of the control device, etc.)
 When the phase angle is equal to or more than 15 % and the current transformer (CT) input value is equal to or less than the heater break alarm (HBA) set value for the preset number of consecutive sampling cycles, an alarm status is produced.

 However, in order to prevent malfunctioning, it is so designed that no heater break alarm occurs at a phase angle of less than 15 % (less than 15 % of maximum load current).

- When heater current can not be turned off (Thyristor break-down or permanent damage)
 When the current transformer (CT) input value is equal to or greater than the thyristor break down set value for the preset number of consecutive sampling cycles, an alarm status is produced.

The alarm will be turned off when the current transformer (CT) input value goes in and stays at non-alarm range for five consecutive cycles.

(However, excepting a case where the alarm interlock function is used.)

Application (When heater break alarm 1 is used for heater break detection and the thyristor break-down alarm, for thyristor element shorting detection)

For Type 2, no set value of heater break alarm 2 (HBA2) is used. Setting the parameter as shown in the following performs the operation as illustrated in the Figure (P. 65).

Set the heater break alarm 1 set value and thyristor break-down set value to approximately 5 % of the maximum load current value. Do not set the heater break alarm set value to more than 15 %.

Parameter in Setting mode

- Maximum load current set value for alarm (MAXC): 20.0 A
- Heater break alarm 1 set value setting (HBA1): 5 %
- Thyristor break-down set value setting (THb): 5 %
- Heater break alarm 2 set value setting (HBA2): 0 (Heater break alarm 2 unused)

1 Always set the maximum heater current value. (See P. 37)
2 Always set the heater break alarm 2 to "0: Heater break alarm 2 unused."

The computed current value used for heater break alarm (HBA) and thyristor break-down alarm determination points

The computed current value used for heater break alarm 1 (HBA1) determination point

\[= (\text{Maximum load current set value}) \times (\text{Heater break alarm 1 (HBA1) set value}) \]

\[= 20.0 \times 5\% = 1.0 \text{ A} \]

Heater break alarm 1 (HBA1) current value 1.0 A

The computed current value used for thyristor break-down alarm determination point

\[= (\text{Maximum load current set value}) \times (\text{Thyristor break-down set value}) \]

\[= 20.0 \times 5\% = 1.0 \text{ A} \]

Thyristor break-down current value 1.0 A

Continued on the next page.
5. FUNCTIONS

Continued from the previous page.

Parameter in Engineering mode
- Alarm 1 output logic (LGA1): 1 [Heater break alarm 1 (ON at alarm output)]
- Alarm 2 output logic (LGA2): 2 [Thyristor break-down alarm (ON at alarm output)]
- Number of heater break alarm 1 delay times (HbC1): 1 time
- Heater break alarm 1 type (AS1): 1 [Type 2 (Absolute value alarm)]
- Alarm interlock (ILS): 0 [Unused]
- Number of heater break alarm 2 delay times (HbC2): This parameter does not use.
- Heater break alarm 2 type (AS2): This parameter does not use.
- Control method (ConT): 0 [Phase control]

![Diagram of parameter settings](image)

How alarm is checked
If an alarm occurs, the indication lamp (HBA1, THY.B) at the front lights.
In addition, the alarm signal is output from the alarm 1 or 2 of the input/output connector.

5.11.4 Heater break alarm for zero-cross control
The following usage is available in zero-cross control. (See Application)

Heater break alarm 1 (HBA1) set value:
The alarm can be output when a heater break occurs by setting the heater break alarm set value.

Thyristor break-down set value:
It is possible to output an alarm when a thyristor element is shorted or broken by setting the thyristor break-down set value.

Heater break alarm 2 (HBA2) set value:
The heater break alarm 2 (HBA2) set value does not use when in the zero-cross control.
Set the set value of Heater break alarm 2 to “0: Heater break alarm 2 unused.”
5. FUNCTIONS

How alarm is activated

- When heater current does not flow (Heater break, malfunction of the control device, etc.)
 When the control output is ON and the current transformer (CT) input value is equal to or less than the heater break alarm 1 (HBA1) set value for the preset number of consecutive sampling cycles, an alarm status is produced.
- When heater current cannot be turned off (Thyristor break-down or permanent damage)
 When the control output is OFF and the current transformer (CT) input value is equal to or greater than the thyristor break-down set value for the preset number of consecutive sampling cycles, an alarm status is produced.

The alarm will be turned off when the current transformer (CT) input value goes in and stays at non-alarm range for five consecutive cycles.
(However, excepting a case where the alarm interlock function is used.)

Application (When heater break alarm 1 is used for heater break detection and the thyristor break-down alarm, for thyristor element shorting detection)

Parameter in Setting mode

- Maximum load current set value for alarm (MAXC)
 1: 20.0 A
- Heater break alarm 1 set value setting (HBA1): 80 %
- Thyristor break-down set value setting (THb): 30 %
- Heater break alarm 2 set value setting (HBA2): 0 (Heater break alarm 2 unused)

1 Always set the maximum heater current value. (See P. 37)
2 Always set the heater break alarm 2 to "0: Heater break alarm 2 unused."

The computed current value used for heater break alarm (HBA) and thyristor break-down alarm determination points

The computed current value used for heater break alarm 1 (HBA1) determination point

= (Maximum load current set value) \(\times\) (Heater break alarm 1 set value)
= 20.0 A \(\times\) 80 % = 16.0 A
Heater break alarm 1 (HBA1) current value 16.0 A

The computed current value used for thyristor break-down alarm determination point

= (Maximum load current set value) \(\times\) (Thyristor break-down set value)
= 20.0 A \(\times\) 30 % = 6.0 A
Thyristor break-down current value 6.0 A

Parameter in Engineering mode

- Alarm 1 output logic (LGA1): 1 [Heater break alarm 1 (ON at alarm output)]
- Alarm 2 output logic (LGA2): 2 [Thyristor break-down alarm (ON at alarm output)]
- Number of heater break alarm 1 delay times (HbC1): 1 time
- Heater break alarm 1 type (AS1): This parameter does not use.
- Alarm interlock (ILS): 0 [Unused]
- Number of heater break alarm 2 delay times (HbC2): This parameter does not use.
- Heater break alarm 2 type (AS2): This parameter does not use.
- Control method (ConT): 1 [Zero-cross control]
HBA1 set value 80 % (16.0 A)
CT input value
Capture
For the preset number of consecutive sampling cycles
Alarm output
OFF
ON

Heater break alarm

Thyristor break-down set value 30 % (6.0 A)
CT input value
Capture
For the preset number of consecutive sampling cycles
Alarm output
OFF
ON

Thyristor break-down alarm

How alarm is checked
If an alarm occurs, the indication lamp (HBA1, THY.B) at the front lights.
In addition, the alarm signal is output from the alarm 1 or 2 of the input/output connector.
5.12 FAIL Alarm

An alarm occurs if a board error of this instrument is detected by the self-diagnostic function.

Action taken when an alarm occurs: The FAIL lamp lights. Thyristor output is turned off.

5.13 Negative Phase Sequence Alarm

It is fudged whether or not each phase is in positive phase sequence when power is turned on, and an alarm occurs if wiring is made by mistaking phase sequence. In addition, an alarm occurs also when only two phases are wired.

Action taken when an alarm occurs: The PHASE lamp lights. Thyristor output is turned off.

5.14 Over Current Alarm (optional)

An alarm occurs when the current exceeding 1.2 times the rating flows through this instrument.

Action taken when an alarm occurs: The OCR lamp lights. Thyristor output is turned off.

5.15 Fuse Break Alarm (optional)

An alarm occurs when the fast-blow fuse in this instrument blew.

Action taken when an alarm occurs: The FUSE lamp lights. Thyristor output is turned off.

Fuse break alarm is not available when the fast-blow fuse (with microswitch) is not provided.

5.16 Set Data Lock Function

The set lock level restricts parameter setting changes by key operation. This function prevents the operator from making errors during operation. The setting of data lock is made for each mode.

×: Mode unlock (Settable) ː−: Mode lock (Unsettable)

<table>
<thead>
<tr>
<th>Set value</th>
<th>Engineering mode</th>
<th>Setting mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>−</td>
<td>×</td>
</tr>
<tr>
<td>0001</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>0010</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>0011</td>
<td>×</td>
<td>−</td>
</tr>
</tbody>
</table>

The numeric value can be checked in Setting mode even if locked.

The Engineering mode cannot be called up if locked.
5.17 External Contact Input (DI) Function

The following operation is performed by the external contact signal. The external contact state can be checked by the contact input state monitor.

(1) **Auto/Manual mode transfer**

Use to select the Auto/Manual mode by the external contact input.

When the external contact is open: Auto mode
When the external contact is closed: Manual mode

- **How auto set value or manual set value is checked**
 These values can be checked on the Input signal monitor 1 and Input signal monitor 2 (only auto set value).

- **External contact action selection**
 Auto/Manual mode transfer can select the operating item. The action type can be selected on the Contact input action (dISL). (P. 43).

(2) **RUN/STOP transfer**

The RUN/STOP can be selected by the external contact signal.

When the external contact is open: STOP
When the external contact is closed: RUN

- **If the RUN/STOP transfer function is used, set the RUN/STOP action (rSA) to “1: Use.”**
 (See P. 46)

(3) **Alarm interlock release**

The alarm interlock is released by the external contact signal.

When the external contact is closed: Alarm interlock release

- **No alarm interlock can be released when in the alarm state. Release the alarm interlock after the cause of the alarm is cleared up.**
6. MAINTENANCE

<table>
<thead>
<tr>
<th>Check item</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspecting main circuit terminal tightening torque</td>
<td>As the large current flows through each hexagon headed bolt used for the main circuit terminal, the loosened bolt may generate heat to cause ignition. Inspect the tightening torque of the bolt periodically. If loosened, tighten it with adequate torque. Recommended tightening torque: 1.6 N·m (20 A, 30 A) 3.8 N·m (45 A, 60 A) 9.0 N·m (80 A, 100 A) For the torque wrench, see page 13.</td>
</tr>
<tr>
<td>Cleaning of thyristor</td>
<td>The attachment of dust to the heat radiation fins may worsen the cooling effect. Therefore, remove the dust attached using a cleaner.</td>
</tr>
</tbody>
</table>

WARNING

- In order to prevent electric shock or instrument failure, always conduct necessary work after power supplied to the entire system is turned off.
- Conduct work after this instrument is cooled. As the temperature of this instrument is very high just after the power is turned off, never touch the instrument while heated.

6.1 Daily Inspection

In order to prevent accident and instrument failure, inspect the instrument periodically.
6.2 Troubleshooting

General causes to be assumed and measures to be taken when an error occurs in this instrument are described in the following. For any inquiries, please contact RKC sales office or the agent, to confirm the specifications of the product.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The FAIL lamp lights</td>
<td>Error of board inside this instrument</td>
<td>Turn off the power once. If a lamp lights after the power is turned on again, please contact RKC sales office or the agent.</td>
</tr>
<tr>
<td>The FREQ lamp lights</td>
<td>Power frequency is out of the allowable range (detection range) when power is turned on or during operation.</td>
<td>Check the value of power supply frequency, and turn off the power once. If a lamp lights after the power is turned on again, please contact RKC sales office or the agent.</td>
</tr>
<tr>
<td>Not to be output</td>
<td>The power supply voltage is not being supplied</td>
<td>Supply the power.</td>
</tr>
<tr>
<td></td>
<td>No gradient is set</td>
<td>Set the external gradient or internal gradient.</td>
</tr>
<tr>
<td></td>
<td>There is no automatic setting input</td>
<td>Check whether or not wiring is conducted by mistaking the output signal of the controller and the type of thyristor input signal. Check that the temperature controller normally operates.</td>
</tr>
<tr>
<td></td>
<td>The fast-blow fuse is broken.</td>
<td>Replace the fast-blow fuse.</td>
</tr>
<tr>
<td>The FUSE lamp lights</td>
<td>The fast-blow fuse is broken.</td>
<td>Replace the fast-blow fuse.</td>
</tr>
<tr>
<td>The PHASE lamp lights</td>
<td>Wiring is conducted by mistaking phase sequence</td>
<td>Conduct wiring so that the phase of each power supply terminal (R, S or T) coincides with that of each main circuit terminal (1/L1, 3/L2 or 5/L3).</td>
</tr>
<tr>
<td></td>
<td>The three-phase power supply is not supplied</td>
<td>Supply the three-phase power.</td>
</tr>
<tr>
<td>No output is turned off.</td>
<td>The automatic set value is set to the maximum value.</td>
<td>Check the output signal of temperature controller.</td>
</tr>
<tr>
<td></td>
<td>A thyristor element is shorted.</td>
<td>Please contact RKC sales office or the agent.</td>
</tr>
<tr>
<td>The HBA1 lamp lights</td>
<td>A heater is broken.</td>
<td>Turn off the power, and check or replace the heater, etc.</td>
</tr>
<tr>
<td>The HBA2 lamp lights</td>
<td>No soft-start time is appropriately set.</td>
<td>If a load generating large rush current is used, thyristor break-down may occur when no soft-start time is appropriately set. In such a case, make the soft-start time longer.</td>
</tr>
<tr>
<td></td>
<td>A thyristor element is damaged.</td>
<td>For any causes other than the above, turn the power off and then contact to your nearest RKC sales agent or our sales office.</td>
</tr>
<tr>
<td>The OCR lamp lights</td>
<td>A current of more than 1.2 times the rating of this instrument flowed.</td>
<td>Turn off the power, and check or replace the heater, etc.</td>
</tr>
</tbody>
</table>
6.3 Replacement of the Fast-Blow Fuse

CAUTION

Use a torque wrench for removing or tightening each hexagon headed bolt which fixes the fuse. Always remove or tighten the bolt by contacting the diagonal surfaces of the wrench with those of the bolt head.

Recommended tool:
- Torque wrench and Socket: Manufactured by TOHNICHI MFG. CO., LTD
- Extension: Manufactured by KTC (KYOTO TOOL)

<table>
<thead>
<tr>
<th>Model code of adjustable type torque wrench with ratchet head</th>
<th>Socket size</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 A and 30 A</td>
<td>QL6N</td>
</tr>
<tr>
<td>45 A to 100 A</td>
<td>QL25N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model code of the extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 A to 100 A</td>
</tr>
</tbody>
</table>

6.3.1 Replacement of the fast-blow fuse (without microswitch)

1. Loosen two screws which fix the cover using a Phillips head screwdriver.
2. Slide the cover upward.

3. Slant the top of the cover and then pull out the cover.

4. Remove two hexagon headed bolts which fix the fast-blow fuse using a torque wrench and then remove the blown fast-blow fuse.

Hexagon headed bolts size
- 20 A and 30 A: M6
- 45 A to 100 A: M10
5. Replace the blown fast-blow fuse with a new one. First temporarily tighten these two hexagon headed bolts to fix the fast-blow fuse and then tighten them at specified torque using the torque wrench.

Always temporarily tighten the two hexagon headed bolts first.

<table>
<thead>
<tr>
<th></th>
<th>Recommended tightening torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 A and 30 A</td>
<td>5.0 N·m (50.98 kgf·cm)</td>
</tr>
<tr>
<td>45 A to 100 A</td>
<td>23.5 N·m (239.63 kgf·cm)</td>
</tr>
</tbody>
</table>

6. Match the cover guide with the rear of the main body guide, and close the cover.

7. Tighten the two screws which fix the cover using the Phillips head screwdriver to finish the work.
6.3.2 Replacement of the fast-blow fuse (with microswitch)

1. Remove the front cover according to the same way as replacing the fast-blow fuse (without microswitch).

2. Disconnect the connector which connects the fast-blow fuse to the main body.

3. Remove two hexagon headed bolts which fix the fast-blow fuse using a torque wrench and then remove the blown fast-blow fuse.

4. Replace the blown fast-blow fuse with a new one. First temporarily tighten these two hexagon headed bolts to fix the fast-blow fuse and then tighten them at specified torque using the torque wrench.

Always temporarily tighten the two hexagon headed bolts first.

<table>
<thead>
<tr>
<th>Hexagon headed bolts size</th>
<th>Recommended tightening torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 A and 30 A</td>
<td>5.0 N-m (50.98 kgf·cm)</td>
</tr>
<tr>
<td>45 A to 100 A</td>
<td>23.5 N-m (239.63 kgf·cm)</td>
</tr>
</tbody>
</table>
5. Connect the connector which connects the fast-blow fuse to the main body.

6. Close the front cover to finish the work. Close the front cover according to the same way as fixing the fast-blow fuse (without microswitch).
7. SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of phase:</td>
<td>Three-phase</td>
</tr>
<tr>
<td>Rated current:</td>
<td>20 A AC, 30 A AC, 45 A AC, 60 A AC, 80 A AC and 100 A AC (The rated current drops when the ambient temperature exceeds 40 °C.)</td>
</tr>
<tr>
<td>Minimum load current:</td>
<td>1 A</td>
</tr>
</tbody>
</table>
| **Power supply voltage:** | **Main circuit:** 360 to 484 V AC [Including power supply voltage variation] (Rating: 400 to 440 V AC)
 Control circuit: 180 to 264 V AC [Including power supply voltage variation] (Rating: 200 to 240 V AC) |
| **Power frequency:** | 50/60 Hz (Automatic discriminating) |
| **Allowable power frequency variations:** | Performance guarantee: 50 Hz ±1 Hz, 60 Hz ± 1 Hz
 Operation guarantee: 45.0 to 54.9 Hz (50 Hz)
 55.0 to 64.9 Hz (60 Hz) |
| **Output voltage range:** | 0 to 98 % of rated voltage |
| **Applicable load:** | Phase control: Linearity load (resistor load)
 Control of primary side of a transformer
 Recommended magnetic field density: Approx. 0.8 tesla (8,000 gauss) or less
 Zero-cross control: Linearity load (resistor load) |
| **Output mode:** | Proportional phase angle to input
 Proportional voltage to input
 Proportional square voltage (electric power) to input
 Constant current control (optional)
 Constant voltage control (optional)
 Constant power control (optional) |
| **Control method:** | Phase control
 Zero-cross control |
| **Input signal:** | **Hardware 1:** Current input: 0 to 20 mA DC, 4 to 20 mA DC
 Voltage input: 0 to 5 V DC, 1 to 5 V DC
 Voltage pulse input: 0/12 V DC
 Dry contact input
 Hardware 2: Voltage input: 0 to 10 V DC
 Voltage pulse input: 0/12 V DC, 0/24 V DC
 Dry contact input
 (Specify either one of them when ordering. However, it is possible to change if it is the input signal within the same hardware.) |
Input impedance:
- Current input 0 to 20 mA DC: 100 Ω
- Current input 4 to 20 mA DC: 100 Ω
- Voltage input 0 to 5 V DC: 30 kΩ
- Voltage input 1 to 5 V DC: 30 kΩ
- Voltage input 0 to 10 V DC: 68 kΩ
- Voltage pulse input 0/12 V DC: 30 kΩ (Hardware 1), 68 kΩ (Hardware 2)
- Voltage pulse input 0/24 V DC: 68 kΩ
- Dry contact input: 47 kΩ

Action at input break:
- Current input: Downscale (control output OFF)
- Voltage input: Downscale (control output OFF)
- Voltage pulse input: Downscale (control output OFF)

Allowable input voltage:
- Current input: Equivalent to 0 to 2.2 V
- Voltage input: 0 to 19 V (0 to 5 V DC, 1 to 5 V DC)
 - 0 to 30 V (0 to 10 V DC)
- Voltage pulse input:
 - Hardware 1: 0 to 19 V (0/12 V DC)
 - Hardware 2: 0 to 30 V (0/12 V DC, 0/24 V DC)

External contact input (DI):
- Number of input point: 3 points
- Input method: Dry contact input
- Dry contact:
 - Open state: 500 kΩ or more
 - Closed state: 10 Ω or less
- Contact current: 10 mA or less
- Voltage when opened: Approx. 5 V DC
- Function:
 - Auto/Manual mode transfer
 - Open state: Auto mode
 - Closed state: Manual mode
 - RUN/STOP transfer
 - Open state: STOP
 - Closed state: RUN
 - Alarm interlock release
 - Closed state: Alarm interlock release

Current transformer (CT) input (optional):
- Number of input point: 2 or 3 points
- Input range: 0.0 to 100.0 A
- Sampling cycle: 20 ms (50 Hz), 16.6 ms (60 Hz)

Potential Transformer (PT) input (optional):
- Number of input point: 3 points
- Input range: 0.0 to 510.0 V
- Sampling cycle: 20 ms (50 Hz), 16.6 ms (60 Hz)
7. SPECIFICATIONS

- **External manual set value:** 0 to 100 %
 Set by the setter (optional)

- **Internal manual set value:** 0.0 to 100.0 %
 Set by the THW-3 front keys

- **External gradient set value:** 0 to 100 %
 Set by the setter (optional)

- **Internal gradient set value:** 0.00 to 1.00 (0 to 100 %)
 Set by the THW-3 front keys

- **Output limiter (high) set value:** 0.0 to 100.0 %
 Set by the THW-3 front keys

- **Output limiter (high) at the time of start:**
 0.0 to 100.0 %
 Set by the THW-3 front keys

- **Output limiter (high) time at the time of start:**
 0.0 to 600.0 seconds
 Set by the THW-3 front keys

- **Output limiter (low) set value:** 0.0 to 100.0 %
 Set by the THW-3 front keys

- **Base-up set value:** 0.0 to 100.0 %
 Set by the THW-3 front keys

- **Ramp (Soft-start/Soft-down) function:**
 0.0 to 99.9 seconds
 Set by the THW-3 front keys

- **Current limiter function (optional):**
 - 20 A: 0.0 to 22.0 A
 - 30 A: 0.0 to 33.0 A
 - 45 A: 0 to 50 A
 - 60 A: 0 to 66 A
 - 80 A: 0 to 88 A
 - 100 A: 0 to 110 A
 Set by the THW-3 front keys

If a current limit value is set to its maximum value, the current limit function is deactivated.
Alarm function: Number of input point: 2 points
Output type: Open collector output
24 V DC, maximum 100 mA
Alarm type: Power frequency error
Negative phase sequence alarm
Heater break alarm 1 (optional)
Thyristor break-down alarm (optional)
Heater break alarm 2 (optional)
Over current alarm (optional)
Fuse break (optional)

Self-diagnostic function: Check item:
Board error
EEPROM error
Calibration data error
Range check of set value
Error displays: The FAIL lamp lights

Ambient temperature: 0 to 40 °C (Performance guarantee range)
–15 to +55 °C (Operation guarantee range)

Ambient humidity: 5 to 95 %RH (Non-condensing)
(Absolute humidity: MAX.W.C 29 g/m³ dry air at 101.3 kPa)

Power consumption: 21 VA

Withstand voltage: Between main circuit and grounding terminals: 1 minute at 2000 V AC

Insulation resistance: Between main circuit and grounding terminals: 20 MΩ or more as 500 V DC

Cooling method: Natural convection

Mounting method: Vertical mounting

Dimensions: See 2.3 Dimensions (P. 8).

Weight: Approx. 10.3 kg (20 to 60 A types)
Approx. 13.6 kg (80 and 100 A types)

Step-down transformer: Power frequency: 50/60 Hz
Primary side (input) voltage: 440 V
Secondary side (output) voltage: 220 V
Withstand voltage: Primary side and secondary side terminals: 1 minute at 2500 V AC
Insulation resistance: 500 V DC, 100 MΩ
How to fix the terminal cover (optional)

![WARNING]

In order to prevent electric shock or instrument failure, always fix or remove the terminal cover after power supplied to the entire system is turned off.

(1) Checking the product

If there is any shortage of accessories, contact the RKC sales office or your nearest RKC sales agent.
- Spacer……4
- Screw……4
- Terminal cover……2

(2) Mounting procedures

Tools necessary for mounting: Flat blade screwdriver and Phillips screwdriver

① Install each spacer using a flat blade screwdriver. In this case, always tighten it with the screwdriver inserted into the slit at its top.
(Recommended tightening torque: 0.88 N·m [8.9 kgf·cm])

 учеб
If tightened using a spanner, the insulating coating formed along the spacer may be separated. If the insulating coating was separated, poor insulation may result.

② Place the terminal cover at its mounting location.

③ Tighten each screw using the Phillips head screwdriver to fix the terminal cover.
(Recommended tightening torque: 1.08 N·m [11.0 kgf·cm])

![Diagram of mounting procedure]
Description of terms

Following table is descriptions of term used in this manual.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum load current (value)</td>
<td>The maximum load current value means a current value which flows through the heater at an output of 100 % (phase angle: 0°).</td>
</tr>
<tr>
<td>Auto mode</td>
<td>This is to automatically adjust power (output value) by the input signal from the controller.</td>
</tr>
<tr>
<td>Input signal type: 0 to 20 mA DC, 4 to 20 mA DC, 0 to 5 V DC, 1 to 5 V DC, 0 to 10 V DC, 0/12 V DC, 0/24 V DC</td>
<td></td>
</tr>
<tr>
<td>Manual mode</td>
<td>External manual mode: This is to manually adjust power (output value) by manipulating the external setter (potentiometer).</td>
</tr>
<tr>
<td></td>
<td>Internal manual mode: This is to manually adjust power (output value) by manipulating the front keys.</td>
</tr>
<tr>
<td>Input signal</td>
<td>In this manual, the following three items are called input signals.</td>
</tr>
<tr>
<td></td>
<td>• Auto set value (value of Auto mode) • Internal manual set value • External manual set value</td>
</tr>
<tr>
<td>Gradient setting</td>
<td>External gradient setting: This is to set the gradient value by the external setter (potentiometer).</td>
</tr>
<tr>
<td></td>
<td>Internal gradient setting: This is to set the gradient value by the front keys.</td>
</tr>
<tr>
<td>RUN</td>
<td>The operation of this instrument is started.</td>
</tr>
<tr>
<td>STOP</td>
<td>The operation of this instrument is stopped.</td>
</tr>
<tr>
<td>HBA</td>
<td>This is the Heater Break Alarm.</td>
</tr>
<tr>
<td></td>
<td>HBA1: Heater Break Alarm 1 HBA2: Heater Break Alarm 2</td>
</tr>
<tr>
<td>CT</td>
<td>Current Transformer</td>
</tr>
<tr>
<td>PT</td>
<td>Potential Transformer</td>
</tr>
</tbody>
</table>

Character symbols

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>Minus</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
</tr>
<tr>
<td>A</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
<td>k</td>
<td>l</td>
</tr>
<tr>
<td>M</td>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>u</td>
<td>V</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>n</td>
<td>o</td>
<td>p</td>
<td>q</td>
<td>r</td>
<td>s</td>
<td>t</td>
<td>u</td>
<td>v</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>Degree</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u</td>
<td>y</td>
<td>0</td>
<td>o</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Lighting state of the character LED
 - : Dim lighting : Bright lighting : Flashing