Temperature Controller

RZ100/RZ400

Instruction Manual
NOTICE

- This manual assumes that the reader has a fundamental knowledge of the principles of electricity, process control, computer technology and communications.
- The figures, diagrams and numeric values used in this manual are only for explanation purpose.
- RKC is not responsible for any damage or injury that is caused as a result of using this instrument, instrument failure or indirect damage.
- RKC is not responsible for any damage and/or injury resulting from the use of instruments made by imitating this instrument.
- Periodic maintenance is required for safe and proper operation of this instrument. Some components have a limited service life, or characteristics that change over time.
- Every effort has been made to ensure accuracy of all information contained herein. RKC makes no warranty, expressed or implied, with respect to the accuracy of the information. The information in this manual is subject to change without prior notice.
- No portion of this document may be reprinted, modified, copied, transmitted, digitized, stored, processed or retrieved through any mechanical, electronic, optical or other means without prior written approval from RKC.
- Various symbols are used on the equipment, they have the following meaning.
 - ~ : Alternating current
 - □ : Reinforced insulation
 - ! : Safety precaution
 This symbol is used where the instruction manual needs to be consulted for the safety of operator and equipment. Carefully read the cautions in this manual before using the instrument.

- Windows is a trademark of Microsoft Corporation.
- Modbus is a registered trademark of Schneider Electric.
- Company names and product names used in this manual are the trademarks or registered trademarks of the respective companies.
Safety Precautions

Pictorial Symbols (safety symbols)

Various pictorial symbols are used in this manual to ensure safe use of the product, to protect you and other people from harm, and to prevent damage to property. The symbols are described below. Be sure you thoroughly understand the meaning of the symbols before reading this manual.

⚠️ WARNING : This mark indicates precautions that must be taken if there is danger of electric shock, fire, etc., which could result in loss of life or injury.

⚠️ CAUTION : This mark indicates that if these precautions and operating procedures are not taken, damage to the instrument may result.

⚠️ : This mark indicates that all precautions should be taken for safe usage.

Danger

⚠️ WARNING

- To prevent injury to persons, damage to the instrument and the equipment, a suitable external protection device shall be required.
- All wiring must be completed before power is turned on to prevent electric shock, fire or damage to the instrument and the equipment.
- This instrument must be used in accordance with the specifications to prevent fire or damage to the instrument and the equipment.
- This instrument is not intended for use in locations subject to flammable or explosive gases.
- Do not touch high-voltage connections such as power supply terminals, etc. to avoid electric shock.
- RKC is not responsible if this instrument is repaired, modified or disassembled by other than factory-approved personnel. Malfunction may occur and warranty is void under these conditions.
This product is intended for use with industrial machines, test and measuring equipment. (It is not designed for use with medical equipment and nuclear energy plant.)

This is a Class A instrument. In a domestic environment, this instrument may cause radio interference, in which case the user may be required to take additional measures.

This instrument is protected from electric shock by reinforced insulation. Provide reinforced insulation between the wire for the input signal and the wires for instrument power supply, source of power and loads.

Be sure to provide an appropriate surge control circuit respectively for the following:
- If input/output or signal lines within the building are longer than 30 meters.
- If input/output or signal lines leave the building, regardless the length.

This instrument is designed for installation in an enclosed instrumentation panel. All high-voltage connections such as power supply terminals must be enclosed in the instrumentation panel to avoid electric shock to operating personnel.

All precautions described in this manual should be taken to avoid damage to the instrument or equipment.

If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

All wiring must be in accordance with local codes and regulations.

To prevent instrument damage as a result of failure, protect the power line and the input/output lines from high currents with a suitable overcurrent protection device with adequate breaking capacity such as a fuse, circuit breaker, etc.

A malfunction in this product may occasionally make control operations impossible or prevent alarm outputs, resulting in a possible hazard. Take appropriate measures in the end use to prevent hazards in the event of malfunction.

Prevent metal fragments or lead wire scraps from falling inside instrument case to avoid electric shock, fire or malfunction.

Tighten each terminal screw to the specified torque found in the manual to avoid electric shock, fire or malfunction.

For proper operation of this instrument, provide adequate ventilation for heat dissipation.

Do not connect wires to unused terminals as this will interfere with proper operation of the instrument.

Turn off the power supply before cleaning the instrument.

Do not use a volatile solvent such as paint thinner to clean the instrument. Deformation or discoloration may occur. Use a soft, dry cloth to remove stains from the instrument.

To avoid damage to the instrument display, do not rub with an abrasive material or push the front panel with a hard object.

For Proper Disposal

When disposing of each part used for this instrument, always follows the procedure for disposing of industrial wastes stipulated by the respective local community.
Symbols

Pictorial Symbols (safety symbols)

- **NOTE**: This mark indicates important information on installation, handling and operating procedures.
- ****: This mark indicates supplemental information on installation, handling and operating procedures.
- ****: This mark indicates where additional information may be located.

Character Symbols

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>Minus</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>B (b)</td>
<td>C</td>
<td>c</td>
<td>D (d)</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
</tr>
<tr>
<td>A</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>M</td>
<td>N (n)</td>
<td>O (o)</td>
<td>P</td>
<td>Q (q)</td>
<td>R (r)</td>
<td>S</td>
<td>T</td>
<td>t</td>
<td>U</td>
<td>u</td>
</tr>
<tr>
<td>L</td>
<td>ñ</td>
<td>n</td>
<td>o</td>
<td>P</td>
<td>q</td>
<td>r</td>
<td>S</td>
<td>t</td>
<td>U</td>
<td>u</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>Degree</td>
<td>/</td>
<td>Prime</td>
<td>* (Asterisk)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>û</td>
<td>ü</td>
<td>y</td>
<td>ë</td>
<td>ñ</td>
<td>ë</td>
<td>î</td>
<td>ü</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Dimly lit**
- **Highlighted**

Other Symbols

- **EX**: Parameters operatable during the “Expanded display mode”
- **OP**: Parameters operatable when optional functions are supplied

For the display mode, refer to 9. DISPLAY FUNCTION (P. 9-1).
1. OUTLINE ... 1-1

The chapter 1 describes features, package contents, model code, etc.

1.1 Features ... 1-2
1.2 Checking the Product ... 1-3
1.3 Model Code ... 1-4
 ■ Suffix code .. 1-4
 ■ Quick start code 2 (Initial setting code) ... 1-7
1.4 Parts Description .. 1-8
 ■ Front panel view .. 1-8
 ■ Bottom view .. 1-9
1.5 Input/Output and Function Blocks ... 1-10
1.6 Handling Procedure to Operation ... 1-11

2. MOUNTING ... 2-1

The chapter 2 describes mounting cautions, dimensions and mounting procedures.

2.1 Mounting Cautions .. 2-2
2.2 Dimensions .. 2-3
2.3 Procedures of Mounting and Removing ... 2-4
 ■ Mounting position of mounting bracket .. 2-4
 ■ Mounting procedures (Standard type) ... 2-5
 ■ Mounting procedures (Waterproof/Dustproof type) 2-6
 ■ Removal procedures .. 2-7
3. WIRING ... 3-1

The chapter 3 describes wiring cautions, wiring layout and wiring of terminals.

3.1 Wiring Cautions ... 3-2
3.2 Terminal Layout ... 3-5
 ■ RZ100 .. 3-5
 ■ RZ400 .. 3-5
 ■ Isolations of input and output .. 3-6
3.3 Wiring of Each Terminal .. 3-7
 ■ Power supply ... 3-7
 ■ Measured input (Thermocouple/RTD) .. 3-7
 ■ Output 1 (OUT1)/Output 2 (OUT2)/Output 3 (OUT3) 3-8
 ■ Current transformer (CT) input (optional) 3-10
 ■ Communication (optional) ... 3-10
3.4 Handling of the Terminal Cover (Optional) 3-11
 ■ Mounting procedures .. 3-11
 ■ Removing procedures .. 3-12

4. BASIC OPERATION AND PARAMETER LIST 4-1

The chapter 4 describes basic operations, different types of modes, switching between modes, and changing/storing the set values.

4.1 Mode Types and Switching .. 4-2
 4.1.1 Switching between modes .. 4-2
 4.1.2 Input type and input range display 4-3
4.2 Parameter Types and Switching ... 4-4
 4.2.1 Scrolling through parameters ... 4-4
 4.2.2 Parameter list ... 4-8
 ■ Monitor display mode ... 4-8
 ■ SV setting mode .. 4-8
 ■ Communication setting mode .. 4-9
 ■ Parameter setting mode .. 4-10
 ■ Initial setting mode .. 4-12
4.3 Changing Set Value ... 4-18
4.4 Protecting Setting Data ... 4-19
5. OPERATION ...5-1
The chapter 5 describes Operating precautions, Setup procedures and Parameter setting that are required before operation.

5.1 Operating Precautions..5-2
5.2 Setup Procedures..5-4
5.3 Initial Setup before Operation ...5-5
 5.3.1 Initial setting of setup example 1 (Setting parameters related to the alarm)........5-6
 5.3.2 Initial setting of setup example 2
 (Setting parameters related to the input, control, output and alarm)5-8
5.4 Setting the Control Set Value [Set value (SV)]5-12
5.5 Setting the Alarm Set Value ..5-13
5.6 Tuning the PID Parameters (Execution of AT)....................5-14

6. INPUT FUNCTION ..6-1
The chapter 6 describes input related functions, setting contents and setting procedure based on the key words related to inputs.

6.1 Changing Input ...6-2
6.2 Correcting Input ...6-7
6.3 Preventing the Input Flicker ...6-8
6.4 Changing Error Handling at Input Error6-10

7. OUTPUT FUNCTION ...7-1
The chapter 7 describes output related functions, setting contents and setting procedure based on the key words related to outputs.

7.1 Changing Output Assignment..7-2
7.2 Limiting Output ...7-6
7.3 Changing Proportional Cycle Time7-8
7.4 Changing Alarm Output (Energize/De-energize)7-12
7.5 Monitoring Manipulated Output Value7-15

8. SETTING AND KEY OPERATION8-1
The chapter 8 describes display related functions, setting contents and setting procedure based on the keywords related to setting and key operation.

8.1 Limiting the Setting Range of Set Value (SV).......................8-2
8.2 Continuing the Control when Entering the Initial Setting Mode8-5
8.3 Restricting Key Operation...8-7
9. DISPLAY FUNCTION .. 9-1

The chapter 9 describes display related functions, setting contents and setting procedure based on the key words related to Display.

9.1 Releasing the Display Restriction of the Parameters................................. 9-2
9.2 Changing the Display Position of STOP during the Control Stop 9-4
9.3 Hiding the Display of the Set Value (SV)... 9-6

10. ALARM FUNCTION .. 10-1

The chapter 10 describes alarm related functions, setting contents and setting procedure based on the key words related to alarms.

10.1 Using Alarm Function .. 10-2
 10.1.1 Setting procedure for alarm function.. 10-2
 ■ Setting example: Set the Alarm 1 (Model code: RZ100-MNM * NNN/N)........ 10-3
 10.1.2 Changing alarm type... 10-8
 10.1.3 Setting a differential gap in alarm action.. 10-14
 10.1.4 Preventing alarm from turning on due to a transient abnormal input 10-16
 10.1.5 Keeping the alarm state (Interlock function).. 10-19
 10.1.6 Releasing the alarm state (Interlock release).. 10-21

10.2 Using Control Loop Break Alarm (LBA) ... 10-23
 ■ Setting procedure for control loop break alarm (LBA)................................... 10-23
 ■ Setting example: Setting Control loop break alarm (LBA) on Alarm 2
 (Model code: RZ100-MNM * NNN/N).. 10-24

10.3 Using Heater Break Alarm (HBA) (Optional)... 10-32
 10.3.1 Setting procedure for Heater break alarm (HBA)..................................... 10-32
 ■ Setting example: Set the Heater break alarm 1 (HBA1)
 (Model code: RZ100-MNM * TNN/N)... 10-33
 10.3.2 Setting the Heater break alarm (HBA) set value..................................... 10-38
 10.3.3 Changing the current transformer (CT) type.. 10-40
 10.3.4 Preventing Heater break alarm (HBA) from turning on due to
 a transient abnormal input.. 10-42
 10.3.5 Keeping the Heater break alarm (HBA) state (Interlock function)............. 10-44
 10.3.6 Releasing Heater break alarm (HBA) state (Interlock release)................ 10-45

10.4 Keeping the Alarm State in STOP Mode... 10-46
10.5 Checking Alarm ON State.. 10-48
11. CONTROL FUNCTION .. 11-1
The chapter 11 describes control related functions, setting contents and setting procedure based on the key words related to controls.

11.1 Running/Stopping control (RUN/STOP transfer) ... 11-2
11.2 Changing Control Action .. 11-4
11.3 Setting PID Values Automatically (Autotuning) ... 11-8
11.4 Setting PID Values Automatically (Startup tuning) .. 11-10
11.5 Setting PID Values Manually ... 11-14
11.6 Controlling with ON/OFF Action .. 11-19
11.7 Controlling with Heat/Cool Action .. 11-24
11.8 Increasing Control Response/Suppressing Overshoot (Fine tuning) 11-29

12. COMMUNICATION FUNCTION (OPTIONAL) 12-1
The chapter 12 describes Host communication including connection, setting, protocol and communication data.

12.1 Outline ... 12-2
12.2 Connections .. 12-4
12.2.1 Wiring for host communication .. 12-4
12.2.2 Connections for loader communication ... 12-7
12.3 Setting .. 12-8
12.3.1 Description of each parameter ... 12-8
12.3.2 Setting procedure .. 12-9
12.3.3 Communication requirements ... 12-10
12.4 RKC Communication Protocol ... 12-12
12.4.1 Polling ... 12-12
12.4.2 Selecting .. 12-18
12.5 Modbus Protocol ... 12-22
12.5.1 Message format ... 12-22
12.5.2 Function code ... 12-23
12.5.3 Communication mode ... 12-23
12.5.4 Slave responses ... 12-24
12.5.5 Calculating CRC-16 ... 12-25
12.5.6 Register read and write ... 12-28
12.5.7 Caution for handling communication data .. 12-32
12.6 Communication Data List .. 12-33
12.6.1 Reference to communication data list ... 12-33
12.6.2 Communication data [RKC communication/Modbus] 12-34
13. TROUBLESHOOTING ... 13-1

The chapter 13 describes Error displays and countermeasures for errors.

13.1 Error Displays ... 13-2
 - Input error displays .. 13-2
 - Self-diagnostic error ... 13-3

13.2 Solutions for Problems .. 13-4
 - Displays .. 13-5
 - Control related errors ... 13-6
 - Operation related errors .. 13-8
 - Alarm related errors .. 13-8
 - Control loop break alarm (LBA) related errors 13-9
 - Heater break alarm (HBA) related errors 13-9
 - Communication related errors .. 13-10

13.3 Verifying Instrument Information 13-12
 - How to display the information .. 13-12
 - How to check .. 13-13

14. SPECIFICATIONS .. 14-1

A. APPENDIX .. A-1

A.1 Parameters to be Initialized/Changed at the time of changing set values .. A-2
 - A.1.1 Data to be initialized .. A-2
 - A.1.2 Data to be automatically converted A-5

A.2 Replacing the Waterproof/Dustproof Gasket (Optional) A-7

A.3 Current Transformer (CT) Dimensions (Optional) A-10

INDEX [Alphabetical order] .. B-1
INDEX [Character order] ... B-5
This chapter describes features, package contents, model code, etc.

1.1 Features ... 1-2
1.2 Checking the Product ... 1-3
1.3 Model Code .. 1-4
1.4 Parts Description .. 1-8
1.5 Input/Output and Function Blocks ... 1-10
1.6 Handling Procedure to Operation ... 1-11
1.1 Features

This high performance digital controller has the following features:

- **Panel space saving**: 60 mm depth (RZ400), 63 mm (RZ100)
- **Sampling cycle 0.25 seconds**
- **Incorporates Autotuning (AT) for easy setting of PID values**
 Automatically calculates the PID values to provide fast stabilization.
- **“Fine tuning” that changes responsiveness**
 A new 6 level Fine tuning allows the operator to control response from fast to slow by changing the Fine tuning setting
 (–3 to +3) while the PID constant remains unchanged.
- **Startup tuning eliminates autotuning time**
 Conventional autotuning time is eliminated by startup tuning which calculates optimum PID values immediately upon
 startup.
- **Freely assignable outputs**
 This instrument can incorporate up to three outputs. Each output port can be freely configured for control outputs
 (heating and cooling outputs) and alarm outputs (including Heater break alarm outputs).
- **Easy parameter setup via USB loader port**
 A user can easily save parameter settings to a PC and copy parameters to other controllers with the USB port, a
 COM-K2 converter, and dedicated PROTEM2 software for the RZ100/400.
 (Loader communication is available only while RZ100/400 are powered.)
 Download the software from the official RKC website:
 http://www.rkcinst.com
- **IP66 waterproof and dustproof protection for severe environments (optional)**
 Waterproof and dustproof construction (IP66) applies to the front part of the instrument when properly installed on the
 panel.
1.2 Checking the Product

Before using this product, check each of the following:

- Model code
- Check that there are no scratches or breakage in external appearance (case, front panel, or terminal, etc.)
- Check that all of the items delivered are complete. (Refer to below)

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Q’TY</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mounting bracket (with screw)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>RZ100/RZ400 Instruction Manual (IMR02Y02-E)</td>
<td>1</td>
<td>Enclosed with RZ100/400 (for English)</td>
</tr>
<tr>
<td>RZ100/RZ400 Instruction Manual (IMR02Y05-E2)</td>
<td>1</td>
<td>This manual (sold separately)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This manual can be downloaded from</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the official RKC website:</td>
</tr>
<tr>
<td>Gasket</td>
<td>1</td>
<td>Optional (Waterproof/Dustproof type)</td>
</tr>
<tr>
<td>KRB100-39 (RZ100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KFB400-36 (RZ400)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal cover</td>
<td>1</td>
<td>Optional (sold separately)</td>
</tr>
<tr>
<td>KCA100-517 (RZ100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KFB400-58 (RZ400)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front cover</td>
<td>1</td>
<td>Optional (sold separately)</td>
</tr>
<tr>
<td>KRB100-315 (RZ100) [Soft cover]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRB100-36 (RZ100) [Hard cover]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRB400-36 (RZ400) [Hard cover]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT (Current transformer for Heater break alarm)</td>
<td></td>
<td>Option (sold separately)</td>
</tr>
<tr>
<td>CTL-6-P-N [for 0 to 30 A]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTL-12-S56-10L-N [for 0 to 100 A]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If any of the above are missing, damaged, or if your manual is incomplete, please contact RKC sales office or the agent.
1.3 Model Code

Check that the product received is correctly specified by referring to the following model code list:
If the product is not identical to the specifications, please contact RKC sales office or the agent.

Suffix code

<table>
<thead>
<tr>
<th>Specification</th>
<th>Suffix code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output 1 (OUT1)</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>(1)</td>
</tr>
<tr>
<td>Relay contact output</td>
<td>(2)</td>
</tr>
<tr>
<td>Voltage pulse output</td>
<td>(3)</td>
</tr>
<tr>
<td>Current output (0 to 20 mA DC)</td>
<td>(4)</td>
</tr>
<tr>
<td>Current output (4 to 20 mA DC)</td>
<td>(5)</td>
</tr>
<tr>
<td>Output 2 (OUT2)</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>(6)</td>
</tr>
<tr>
<td>Relay contact output</td>
<td>(7)</td>
</tr>
<tr>
<td>Voltage pulse output</td>
<td>(8)</td>
</tr>
<tr>
<td>Current output (0 to 20 mA DC)</td>
<td>(9)</td>
</tr>
<tr>
<td>Output 3 (OUT3)</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Relay contact output</td>
<td></td>
</tr>
<tr>
<td>Current transformer (CT) input</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
</tr>
<tr>
<td>RS-485 (RKC communication)</td>
<td></td>
</tr>
<tr>
<td>RS-485 (Modbus)</td>
<td></td>
</tr>
<tr>
<td>Communication function</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
</tr>
<tr>
<td>RS-485 (RKC communication)</td>
<td></td>
</tr>
<tr>
<td>RS-485 (Modbus)</td>
<td></td>
</tr>
<tr>
<td>Waterproof/Dustproof</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Waterproof/Dustproof (IP66)</td>
<td></td>
</tr>
<tr>
<td>Quick start code</td>
<td></td>
</tr>
<tr>
<td>Quick start code not specified</td>
<td></td>
</tr>
<tr>
<td>Specify quick start code</td>
<td></td>
</tr>
<tr>
<td>Specify quick start code 1</td>
<td></td>
</tr>
<tr>
<td>Specify quick start code 1 and 2</td>
<td></td>
</tr>
<tr>
<td>Control method</td>
<td></td>
</tr>
<tr>
<td>No specify quick start code</td>
<td></td>
</tr>
<tr>
<td>PID control with AT (Reverse action)</td>
<td></td>
</tr>
<tr>
<td>PID control with AT (Direct action)</td>
<td></td>
</tr>
<tr>
<td>Heat/Cool PID control with AT</td>
<td></td>
</tr>
<tr>
<td>Heat/Cool PID control with AT (for Extruder [air cooling])</td>
<td></td>
</tr>
<tr>
<td>Heat/Cool PID control with AT (for Extruder [water cooling])</td>
<td></td>
</tr>
<tr>
<td>Measured input and Range</td>
<td></td>
</tr>
<tr>
<td>No specify quick start code</td>
<td></td>
</tr>
<tr>
<td>Refer to Input Range Code Table</td>
<td></td>
</tr>
</tbody>
</table>
1. OUTLINE

If Quick start code is not specified, control action, input range and outputs are factory configured as follows depending on with or without outputs.

<table>
<thead>
<tr>
<th>With/Without output(s)</th>
<th>Control method code</th>
<th>Range code</th>
<th>Factory setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Output 1 (OUT1)</td>
</tr>
<tr>
<td>Output 1 (OUT1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output 2 (OUT2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output 3 (OUT3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. With output
2. Without output

If Quick start code 1 is specified, output contents are configured as follows depending on with or without output(s).

(Content of range code is not limited)

<table>
<thead>
<tr>
<th>With/Without output(s)</th>
<th>User specified setting</th>
<th>Control method code</th>
<th>Range code</th>
<th>Factory setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Output 1 (OUT1)</td>
</tr>
<tr>
<td>Output 1 (OUT1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output 2 (OUT2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output 3 (OUT3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. With output
2. Without output

To use alarm output, relay contact output must be specified.
<table>
<thead>
<tr>
<th>Input type</th>
<th>Code</th>
<th>Range</th>
<th>Input type</th>
<th>Code</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>K01</td>
<td>0 to 200 °C</td>
<td>J</td>
<td>JA7</td>
<td>0 to 300 °F</td>
</tr>
<tr>
<td></td>
<td>K02</td>
<td>0 to 400 °C</td>
<td></td>
<td>JB9</td>
<td>–328 to +2192 °F</td>
</tr>
<tr>
<td></td>
<td>K03</td>
<td>0 to 600 °C</td>
<td></td>
<td>JC8</td>
<td>–199.9 to +550.0 °F</td>
</tr>
<tr>
<td></td>
<td>K04</td>
<td>0 to 800 °C</td>
<td></td>
<td>T01</td>
<td>–199.9 to +400.0 °C</td>
</tr>
<tr>
<td></td>
<td>K05</td>
<td>0 to 1000 °C</td>
<td></td>
<td>T02</td>
<td>–199.9 to +100.0 °C</td>
</tr>
<tr>
<td></td>
<td>K06</td>
<td>0 to 1200 °C</td>
<td></td>
<td>T03</td>
<td>–100.0 to +200.0 °C</td>
</tr>
<tr>
<td></td>
<td>K07</td>
<td>0 to 1372 °C</td>
<td></td>
<td>T04</td>
<td>0.0 to 350.0 °C</td>
</tr>
<tr>
<td></td>
<td>K09</td>
<td>0.0 to 400.0 °C</td>
<td></td>
<td>T05</td>
<td>–199.9 to +300.0 °C</td>
</tr>
<tr>
<td></td>
<td>K10</td>
<td>0.0 to 800.0 °C</td>
<td></td>
<td>T06</td>
<td>0.0 to 400.0 °C</td>
</tr>
<tr>
<td></td>
<td>K13</td>
<td>0 to 100 °C</td>
<td></td>
<td>R01</td>
<td>0 to 1600 °C</td>
</tr>
<tr>
<td></td>
<td>K14</td>
<td>0 to 300 °C</td>
<td></td>
<td>R02</td>
<td>0 to 1769 °C</td>
</tr>
<tr>
<td></td>
<td>K17</td>
<td>0 to 450 °C</td>
<td></td>
<td>R04</td>
<td>0 to 1350 °C</td>
</tr>
<tr>
<td></td>
<td>K20</td>
<td>0 to 500 °C</td>
<td></td>
<td>RA1</td>
<td>0 to 3200 °F</td>
</tr>
<tr>
<td></td>
<td>K41</td>
<td>–200 to +1372 °C</td>
<td></td>
<td>S01</td>
<td>0 to 1600 °C</td>
</tr>
<tr>
<td></td>
<td>K43</td>
<td>–199.9 to +400.0 °C</td>
<td></td>
<td>S02</td>
<td>0 to 1769 °C</td>
</tr>
<tr>
<td></td>
<td>KA1</td>
<td>0 to 800 °F</td>
<td></td>
<td>B01</td>
<td>400 to 1800 °C</td>
</tr>
<tr>
<td></td>
<td>KA2</td>
<td>0 to 1600 °F</td>
<td></td>
<td>B02</td>
<td>0 to 1820 °C</td>
</tr>
<tr>
<td></td>
<td>KA3</td>
<td>0 to 2502 °F</td>
<td></td>
<td>E01</td>
<td>0 to 800 °C</td>
</tr>
<tr>
<td></td>
<td>KC8</td>
<td>–100.0 to +752.0 °F</td>
<td></td>
<td>E02</td>
<td>0 to 1000 °C</td>
</tr>
<tr>
<td>J</td>
<td>J01</td>
<td>0 to 200 °C</td>
<td></td>
<td>N01</td>
<td>0 to 1200 °C</td>
</tr>
<tr>
<td></td>
<td>J02</td>
<td>0 to 400 °C</td>
<td></td>
<td>W01</td>
<td>0 to 2000 °C</td>
</tr>
<tr>
<td></td>
<td>J03</td>
<td>0 to 600 °C</td>
<td></td>
<td>W02</td>
<td>0 to 2320 °C</td>
</tr>
<tr>
<td></td>
<td>J04</td>
<td>0 to 800 °C</td>
<td></td>
<td>WA1</td>
<td>0 to 4000 °F</td>
</tr>
<tr>
<td></td>
<td>J05</td>
<td>0 to 1000 °C</td>
<td></td>
<td>A01</td>
<td>0 to 1300 °C</td>
</tr>
<tr>
<td></td>
<td>J06</td>
<td>0 to 1200 °C</td>
<td></td>
<td>A02</td>
<td>0 to 1390 °C</td>
</tr>
<tr>
<td></td>
<td>J07</td>
<td>–199.9 to +300.0 °C</td>
<td></td>
<td>A05</td>
<td>0 to 1200 °C</td>
</tr>
<tr>
<td></td>
<td>J10</td>
<td>0 to 450 °C</td>
<td></td>
<td>AA1</td>
<td>0 to 2400 °F</td>
</tr>
<tr>
<td></td>
<td>JA1</td>
<td>0 to 800 °F</td>
<td></td>
<td>AA2</td>
<td>0 to 2534 °F</td>
</tr>
<tr>
<td></td>
<td>JA2</td>
<td>0 to 1600 °F</td>
<td></td>
<td>U01</td>
<td>–199.9 to +600.0 °C</td>
</tr>
<tr>
<td></td>
<td>JA3</td>
<td>0 to 2192 °F</td>
<td></td>
<td>L01</td>
<td>0 to 400 °C</td>
</tr>
<tr>
<td></td>
<td>JA6</td>
<td>0 to 400 °F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input type</th>
<th>Code</th>
<th>Range</th>
<th>Input type</th>
<th>Code</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt100</td>
<td>D01</td>
<td>–199.9 to +649.0 °C</td>
<td></td>
<td>D02</td>
<td>–199.9 to +200.0 °C</td>
</tr>
<tr>
<td></td>
<td>D03</td>
<td>–100.0 to +50.0 °C</td>
<td></td>
<td>D04</td>
<td>–100.0 to +100.0 °C</td>
</tr>
<tr>
<td></td>
<td>D05</td>
<td>–100.0 to +200.0 °C</td>
<td></td>
<td>D06</td>
<td>0.0 to 50.0 °C</td>
</tr>
<tr>
<td></td>
<td>D07</td>
<td>0.0 to 100.0 °C</td>
<td></td>
<td>D08</td>
<td>0.0 to 200.0 °C</td>
</tr>
<tr>
<td></td>
<td>D09</td>
<td>0.0 to 300.0 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JA1</td>
<td>AA1</td>
<td>0 to 2400 °F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JA2</td>
<td>AA2</td>
<td>0 to 2534 °F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JA3</td>
<td>U01</td>
<td>–199.9 to +600.0 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JA4</td>
<td>L01</td>
<td>0 to 400 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thermocouple (TC) input

RTD input
Quick start code 2 (Initial setting code)

Quick start code 2 tells the factory to ship with each parameter preset to the values detailed as specified by the customer. Quick start code 2 is not necessarily specified when ordering, unless the preset is requested. These parameters are software selectable items and can be re-programmed in the field following procedures found in the manual.

Alarm 1 type

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Quick start code 2 (Initial setting code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) None</td>
<td>N</td>
</tr>
<tr>
<td>(B) Deviation high</td>
<td>A</td>
</tr>
<tr>
<td>(C) Deviation low</td>
<td>B</td>
</tr>
<tr>
<td>(D) Deviation high/low</td>
<td>C</td>
</tr>
<tr>
<td>(E) Band</td>
<td>D</td>
</tr>
<tr>
<td>(F) Deviation high/low with hold action</td>
<td>E</td>
</tr>
<tr>
<td>(G) Deviation low with hold action</td>
<td>F</td>
</tr>
</tbody>
</table>

Control output assignment

- **PID control:**
 - Output 1 (OUT1)
- **Heat/Cool PID control:**
 - Heat-side control output: Output 1 (OUT1)
 - Cool-side control output: Output 2 (OUT2)

Output assignment of Alarm 1

<table>
<thead>
<tr>
<th>No assignment</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output 1 (OUT1)</td>
<td>1</td>
</tr>
<tr>
<td>Output 2 (OUT2)</td>
<td>2</td>
</tr>
<tr>
<td>Output 3 (OUT3)</td>
<td>3</td>
</tr>
</tbody>
</table>

Output assignment of Alarm 2

<table>
<thead>
<tr>
<th>No assignment</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output 1 (OUT1)</td>
<td>1</td>
</tr>
<tr>
<td>Output 2 (OUT2)</td>
<td>2</td>
</tr>
<tr>
<td>Output 3 (OUT3)</td>
<td>3</td>
</tr>
</tbody>
</table>

Output assignment of Heater break alarm 1

<table>
<thead>
<tr>
<th>No assignment</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output 1 (OUT1)</td>
<td>1</td>
</tr>
<tr>
<td>Output 2 (OUT2)</td>
<td>2</td>
</tr>
<tr>
<td>Output 3 (OUT3)</td>
<td>3</td>
</tr>
</tbody>
</table>

Control loop break alarm (LBA)

1 Control loop break alarm (LBA) can be specified only for Alarm 2.
2 Alarm output assignment cannot overlap the control output assignment.
1.4 Parts Description

This section describes various display units and the key functions.

- Front Panel View

![Diagram of RZ100]

- Measured value (PV) display [Green]
- Set value (SV) display [Orange]
- AT lamp [Green]
- OUT1 to OUT3 lamp [Green]
- ALM lamp [Red]

Set (SET) key
Shift key
Down key
Up key

![Diagram of RZ400]
● Display units

<table>
<thead>
<tr>
<th>Measured value (PV) display [Green]</th>
<th>Displays Measured value (PV) or various parameter symbols.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set value (SV) display [Orange]</td>
<td>Displays Set value (SV) or various parameter set values.</td>
</tr>
</tbody>
</table>

● Indication lamps

| AT lamp [Green] | • Flashes when Autotuning (AT) is activated. (After AT is completed: AT lamp will go out)
	• Lights during Startup tuning (ST) execution. (After ST is completed: AT lamp will go out)
OUT1 lamp [Green]	Lights when Output 1 (OUT1) is turned on.*
OUT2 lamp [Green]	Lights when Output 2 (OUT2) is turned on.*
OUT3 lamp [Green]	Lights when Output 3 (OUT3) is turned on.*
ALM lamp [Red]	Lights when Alarm 1, Alarm 2, Heater break alarm 1 or Heater break alarm 2 is turned on.

* Lamp indication becomes as follows for current output:
For an output of less than 0 %: Extinguished
For an output of more than 100 %: Lit
For an output of more than 0 % but less than 100 %: Dimly lit.

● Operation keys

<table>
<thead>
<tr>
<th>SET</th>
<th>Set (SET) key</th>
<th>Used for calling up parameters and set value registration.</th>
</tr>
</thead>
</table>
| R/S | Shift key | Shifts digits when settings are changed.
| | | Used to switch monitor items, RUN/STOP, and modes. |
|◇ | Down key | Decreases numerals. |
| ▲ | Up key | Increases numerals. |

NOTE

To avoid damage to the instrument, never use a sharp object to press keys.

■ Bottom View

Loader communication connector

Setting and monitoring on a personal computer (PC) is possible if the controller is connected with our cable to a PC via our USB communication converter COM-K2 (sold separately) ¹.

Our communication software ² must be installed on the PC.

(Loader communication is available only while RZ100/400 are powered.)

¹ For the COM-K2, refer to the official RKC website.
² Only available as a download from the official RKC website: http://www.rkcinst.com
1.5 Input/Output and Function Blocks

This section describes the input/output and function blocks of the instrument.

Use our COM-K2 for a connection to a PC.
1.6 Handling Procedure to Operation

After installation and wiring, follow the procedure below to configure settings required for operation.

Power ON

- **Set operation conditions?**
 - Conditions specified at time of ordering are acceptable
 - To change pre-set conditions

Initial Setting

- **Tuning Type?**
 - Autotuning (AT)

Operation Setting

- **Operation Setting**

ST Setting

- **ST Execution**
 - During ST execution: AT lamp lights

AT End

- AT lamp turns off
 - When the AT is finished, the controller will automatically return to PID control.

ST End

- AT lamp turns off
 - When the ST is finished, the controller will automatically return to PID control.

Operation

* Change the PID constants manually when the optimum PID constants cannot be calculated by AT or ST because of characteristic variations of the controlled system.
This chapter describes mounting cautions, dimensions and mounting procedures.

2.1 Mounting Cautions .. 2-2
2.2 Dimensions .. 2-3
2.3 Procedures of Mounting and Removing... 2-4
2.1 Mounting Cautions

WARNING

To prevent electric shock or instrument failure, always turn off the power before mounting or removing the instrument.

1. This instrument is intended to be used under the following environmental conditions. *(IEC 61010-1)*
 [OVERVOLTAGE CATEGORY II, POLLUTION DEGREE 2]

2. Use this instrument within the following environment conditions:
 - Allowable ambient temperature: −10 to +55 °C
 - Allowable ambient humidity: 5 to 95 %RH
 (Absolute humidity: MAX.W.C 29 g/m³ dry air at 101.3 kPa)
 - Installation environment conditions: Indoor use
 Altitude up to 2000 m
 Short-term temporary overvoltage: 1440 V
 Long-term temporary overvoltage: 490 V

3. Avoid the following conditions when selecting the mounting location:
 - Rapid changes in ambient temperature which may cause condensation.
 - Corrosive or inflammable gases.
 - Direct vibration or shock to the mainframe.
 - Water, oil, chemicals, vapor or steam splashes.
 - Excessive dust, salt or iron particles.
 - Excessive induction noise, static electricity, magnetic fields or noise.
 - Direct air flow from an air conditioner.
 - Exposure to direct sunlight.
 - Excessive heat accumulation.

4. Mount this instrument in the panel considering the following conditions:
 - Provide adequate ventilation space so that heat does not build up.
 - Ensure at least 50 mm space on top and bottom of the instrument for maintenance and environmental reasons.
 - Do not mount this instrument directly above the equipment that generates large amount of heat (heaters, transformers, thyristor units, large-wattage resistors.)
 - If the ambient temperature rises above 55 °C, cool this instrument with a forced air cooling fan, cooling unit, etc. Cooled air should not blow directly on this instrument.
 - In order to improve safety and the immunity to withstand noise, mount this instrument as far away as possible from high voltage equipment, power lines, and rotating machinery.
 High voltage equipment: Do not mount within the same panel.
 Power lines: Separate at least 200 mm.
 Rotating machinery: Separate as far as possible.
 - For correct functioning mount this instrument in a horizontal position.

5. In case this instrument is connected to a supply by means of a permanent connection, a switch or circuit-breaker shall be included in the installation. This shall be in close proximity to the equipment and within easy reach of the operator. It shall be marked as the disconnecting device for the equipment.
2.2 Dimensions

Panel thickness: 1 to 10 mm
(When mounting multiple instruments close together, the panel strength should be checked to ensure proper support.)

■ RZ100

(Unit: mm)

Close horizontal mounting *4

Individual mounting *3

\[L_1 = 48 \times n - 3 \]
\[n = \text{Number of controllers (2 to 6)} \]

■ RZ400

(Unit: mm)

Close horizontal mounting *4

Individual mounting *3

\[L_1 = 48 \times n - 3 \]
\[n = \text{Number of controllers (2 to 6)} \]

*1 Gasket (optional) [Waterproof/Dustproof]
*2 Terminal cover (optional) [sold separately]
*3 To keep the instrument as waterproof as possible, make sure that the panel surface has no burr or distortion where the hole is to be cut out.
*4 Remove the gasket. When multiple RZ100/400 are mounted close to one another IP66 water-proof protection will no longer assured.
2.3 Procedures of Mounting and Removing

- The mounting position of the mounting brackets
- Mounting positions for a single controller

* If mounting brackets are installed on the sides of the Waterproof/Dustproof type controller as shown in the figure (marked with *), sufficient Waterproof/Dustproof performance cannot be obtained.

* Mounting positions for close mounting

When two or more controllers are mounted closely, the optional waterproof/dustproof feature is no longer assured.
Mounting procedures (Standard type)

1. Prepare the panel cutout as specified in Fig. 2.1.
 (Panel thickness: 1 to 10 mm)
 Refer to 2.2 Dimensions (P. 2-3).

2. Insert the instrument through the panel cutout. (Fig. 2.2)

3. Insert the mounting bracket into the mounting groove of the instrument. (Fig. 2.3)

4. Push the mounting bracket forward until the bracket is firmly secured to the panel. (Fig. 2.4)

5. Tighten the screw for the mounting bracket with a Phillips screwdriver.
 Do not overtighten the screw. (Fig. 2.5)
 Recommended tightening torque: 0.15 N·m [1.5 kgf·cm]

6. The other mounting bracket should be installed in the same way as described in 3 to 5.
Mounting procedures (Waterproof/Dustproof type)

The front of the instrument conforms to **IP66** [Specify when ordering] when mounted on the panel. For effective Waterproof/Dustproof, the gasket must be securely placed between the instrument and the panel without any gap. If gasket is damaged, please contact RKC sales office or the agent.

1. Prepare the panel cutout as specified in Fig. 2.6.
 (Panel thickness: 1 to 10 mm)
 Refer to **2.2 Dimensions (P. 2-3)**.

2. Set the waterproof/dustproof gasket (optional) on the case from the back side of the instrument as shown in Fig. 2.7. Insert the instrument through the panel cutout.

3. Insert the mounting bracket into the mounting groove of the instrument. (Fig. 2.8)

 ☑️ **NOTE**
 For waterproof and dustproof protection, two mounting brackets must be placed on the top and the bottom side of the instrument. If the mounting brackets are placed on the sides of the controller, waterproof and dustproof protection will not be guaranteed.

4. Push the mounting bracket forward until the bracket is firmly secured to the panel. (Fig. 2.9)

5. Tighten the screw for the mounting bracket with a Phillips screwdriver.
 Do not overtighten the screw. (Fig. 2.10)
 Recommended tightening torque: 0.15 N·m [1.5 kgf·cm]

6. The other mounting bracket should be installed in the same way as described in 3 to 5.

For replacing of the gasket, refer to **APPENDIX A.2 Replacing the Waterproof/Dustproof Gasket (Optional) (P. A-7)**.
Removal procedures

1. Turn the power OFF.
2. Remove the wiring.
3. Loosen the screw of the mounting bracket.
4. Remove the mounting bracket by pulling it up (Fig. 2.12 ①) and forward (Fig. 2.12 ②) while holding the rear (Fig. 2.11).
5. The other mounting bracket(s) should be removed in the same way as described in 3 and 4.
6. Pull out the instrument from the mounting cutout while holding the front panel frame of this instrument. (Fig. 2.13)

Use long-nose pliers to remove mounting brackets from the instrument that is installed in a narrow place or installed tightly in a vertical position.
This chapter describes wiring cautions, wiring layout and wiring of terminals.

3.1 Wiring Cautions.. 3-2
3.2 Terminal Layout .. 3-5
3.3 Wiring of Each Terminal.. 3-7
3.4 Handling of the Terminal Cover (Optional)....................................... 3-11
3. WIRING

3.1 Wiring Cautions

⚠️ WARNING

To prevent electric shock or instrument failure, do not turn on the power until all wiring is completed. Make sure that the wiring is correct before applying power to the instrument.

- For thermocouple input, use the appropriate compensation wire.
- For RTD input, use low resistance lead wire with no difference in resistance between the three lead wires.
- To avoid noise induction, keep input signal wire away from instrument power line, load lines and power lines of other electric equipment.
- If there is electrical noise in the vicinity of the instrument that could affect operation, use a noise filter.
 - Shorten the distance between the twisted power supply wire pitches to achieve the most effective noise reduction.
 - Always install the noise filter on a grounded panel. Minimize the wiring distance between the noise filter output and the instrument power supply terminals to achieve the most effective noise reduction.
 - Do not connect fuses or switches to the noise filter output wiring as this will reduce the effectiveness of the noise filter.
- Allow approximately 5 seconds for contact output after the instrument is turned on. Use a delay relay when the output line is used for an external interlock circuit.
- Power supply wiring must be twisted and have a low voltage drop.
- This instrument is not provided with an overcurrent protection device (fuse). If a fuse is required for safety, install a fuse close to the instrument.
 - Fuse type: Time-lag fuse
 - Fuse rating: Rated voltage 250 V, Rated current 1 A
- Use the solderless terminal appropriate to the screw size.
 - Screw size: M3 × 7 (With 5.8 × 5.8 square washer)
 - Recommended tightening torque: 0.4 N·m (4 kgf·cm)
 - Applicable wire: Solid/twisted wire of 0.25 to 1.65 mm²
 - Specified dimension: Refer to Fig. 3.1
 - Specified solderless terminals: Circular terminal with isolation V1.25-MS3 (M3 screw, width 5.6 mm, hole diameter 3.2 mm)
- Make sure that during field wiring parts of conductors cannot come into contact with adjacent conductive parts.
• When wiring RZ100/RZ400, wire from the left direction toward the backside terminals as shown in Fig. 3.2.
 For RZ100, the wiring surfaces of the central and the right side lines of terminals are inclined to make it easier to wire from the left side.
 When using the terminal cover (Figs. 3.2, 3.4), it is not possible to wire from the right side.
 When wiring from the left and right with a close mounting, there are cases where adjacent instruments cannot be wired.

![Fig. 3.2: Wiring direction](image)

(RZ100 is used in the example shown, but the wiring directions are the same for RZ400.)

• Up to two solderless terminal lugs can be connected to one terminal screw.
 However, **reinforced insulation cannot be assured in this case.**

![Fig. 3.3: Image of how to bend each solderless terminal lug](image)

(RZ100 is used in the example shown, but restrictions for crossover wiring are the same for RZ400.)

* If solderless terminal lugs other than the recommended dimensions are used, terminal screws may not tighten. In that case, bend each solderless terminal lug before wiring.
 If the terminal screw is forcibly tightened, it may be damaged.

* In case of RZ100, if two solderless terminal lugs are connected to one terminal screw, a terminal cover cannot be used.

* When tightening a screw of the instrument, make sure to fit the screwdriver properly into the screw head mounted tilted or flat as shown in the right figure. Tightening the screw with excessive torque may damage the screw thread.
• Caution for using the terminal cover:
 – To prevent electric shock or instrument failure, always turn off the power before mounting or removing the terminal cover.
 – When mounting and removing the terminal cover, apply pressure very carefully to avoid damage to the terminal cover.
 – If a solderless terminal lug touches the RZ400 terminal cover, remove the projection from the terminal cover by manually bending it back and forth until it breaks off. (Fig. 3.4)

For the mounting and removing of the terminal cover, refer to **3.4 Handling of the Terminal Cover (Optional)** (P. 3-11).
3.2 Terminal Layout

The terminal layout is as follows.

To prevent malfunctioning, do not connect wires to unused terminals.

- **RZ100**

- **RZ400**
Isolations of input and output

For the Input/Output isolation block of this instrument, refer to the following:

1. Outputs are isolated if OUT1 or OUT2 is “relay contact output.” If both outputs are not “relay contact output,” outputs are not isolated.

2. Current transformer input and communication are optional functions.
3.3 Wiring of Each Terminal

Always check the polarity of each terminal prior to wiring.

■ Power supply

- Connect the power to terminal numbers 1 and 2.

- Power supply voltage for the controller must be within the range shown below.

<table>
<thead>
<tr>
<th>Power supply type</th>
<th>Power consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>85 to 264 V AC (including voltage variation) [Rating: 100 to 240 V AC]</td>
<td>RZ100: 5.1 VA max. (at 100 V AC)</td>
</tr>
<tr>
<td></td>
<td>7.6 VA max. (at 240 V AC)</td>
</tr>
<tr>
<td>Power supply frequency: 50/60 Hz</td>
<td>RZ400: 5.9 VA max. (at 100 V AC)</td>
</tr>
<tr>
<td></td>
<td>8.4 VA max. (at 240 V AC)</td>
</tr>
</tbody>
</table>

- If there is electrical noise in the vicinity of the instrument that could affect operation, use a noise filter.
- Power supply wiring must be twisted and have a low voltage drop.
- This instrument is not provided with an overcurrent protection device (fuse). If a fuse is required for safety, install a fuse close to the instrument.
 - Fuse type: Time-lag fuse
 - Fuse rating: Rated voltage 250 V, Rated current 1 A

■ Measured input (Thermocouple/RTD)

- For the measured input type, terminals 10 through 12 are allocated to the measured input.

- The input types (input group) are as follows.

<table>
<thead>
<tr>
<th>Input group</th>
<th>Input type</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTD input</td>
<td>Pt100 (JIS C1604-1997), JPt100 (JIS C1604-1997, JIS C1604-1981 of Pt100)</td>
</tr>
</tbody>
</table>

- For thermocouple input, use the appropriate compensation wire.
- For RTD input, use low resistance lead wires with no difference in resistance between the three lead wires.
- To avoid noise induction, keep input signal wire away from instrument power line, load lines and power lines of other electric equipment.
Output 1 (OUT1)/Output 2 (OUT2)/Output 3 (OUT3)

- Terminals 5 and 6 are for output 1 (OUT1); Terminals 3 and 4 are for output 2 (OUT2); Terminals 8 and 9 are for output 3 (OUT3).
- Connect an appropriate load according to the output type. (Specify when ordering)

<table>
<thead>
<tr>
<th>Specification code</th>
<th>Output type</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT1</td>
<td>OUT2</td>
<td>OUT3</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>—</td>
</tr>
</tbody>
</table>

- Outputs are isolated if output 1 (OUT1) or output 2 (OUT2) is “relay contact output.” If both outputs are “relay contact output,” outputs are not isolated.
- Number of outputs and output types must be specified when ordering. The specifications of each output are as follows.
When output type is a relay contact, specification may be different depending on the assigned output type.

<table>
<thead>
<tr>
<th>Type</th>
<th>Output terminal</th>
<th>Output type</th>
<th>Specification of relay contact output</th>
</tr>
</thead>
<tbody>
<tr>
<td>RZ100</td>
<td>Output 1 (OUT1)</td>
<td>Control output</td>
<td>Contact type: 1a contact</td>
</tr>
<tr>
<td></td>
<td>Output 2 (OUT2)</td>
<td></td>
<td>Contact rating (Resistive load): 250 V AC 3 A, 30 V DC 1 A</td>
</tr>
<tr>
<td></td>
<td>Output 3 (OUT3)</td>
<td></td>
<td>Electrical life: 100,000 times or more (Rated load)</td>
</tr>
<tr>
<td></td>
<td>Output 3 (OUT3)</td>
<td>Control output</td>
<td>Contact type: 1a contact</td>
</tr>
<tr>
<td></td>
<td>Output 1 (OUT1)</td>
<td></td>
<td>Contact rating (Resistive load): 250 V AC 3 A, 30 V DC 1 A</td>
</tr>
<tr>
<td></td>
<td>Output 2 (OUT2)</td>
<td></td>
<td>Electrical life: 300,000 times or more (Rated load)</td>
</tr>
<tr>
<td></td>
<td>Output 3 (OUT3)</td>
<td></td>
<td>Mechanical life: 50 million times or more</td>
</tr>
<tr>
<td></td>
<td>Output 3 (OUT3)</td>
<td>Alarm output, Heater break alarm output</td>
<td>Contact type: 1a contact</td>
</tr>
<tr>
<td></td>
<td>Output 1 (OUT1)</td>
<td></td>
<td>Contact rating (Resistive load): 250 V AC 1 A, 30 V DC 0.5 A</td>
</tr>
<tr>
<td></td>
<td>Output 2 (OUT2)</td>
<td></td>
<td>Electrical life: 150,000 times or more (Rated load)</td>
</tr>
<tr>
<td></td>
<td>Output 3 (OUT3)</td>
<td></td>
<td>Mechanical life: 20 million times or more</td>
</tr>
<tr>
<td></td>
<td>Output 3 (OUT3)</td>
<td></td>
<td>(Switching: 300 times/min)</td>
</tr>
</tbody>
</table>

- It is possible to specify the following uses for output when ordering. (Output reassignment is possible after the receipt of the delivery.)

Output assignment list [for PID control]

<table>
<thead>
<tr>
<th>Control output</th>
<th>Alarm 1 output</th>
<th>Alarm 2 output</th>
<th>Heater break alarm 1 (HBA1) output</th>
<th>Heater break alarm 2 (HBA2) output</th>
</tr>
</thead>
<tbody>
<tr>
<td>No assignment</td>
<td>Any one of outputs 1, 2, and 3 (OUT1, 2, 3) *</td>
<td>Not available</td>
<td>Not available</td>
<td>Not available</td>
</tr>
<tr>
<td>Output 1 (OUT1)</td>
<td>Output 2 (OUT2) or Output 3 (OUT3) *</td>
<td>Output 1 (OUT1) or Output 3 (OUT3) *</td>
<td>Output 1 (OUT1) or Output 3 (OUT3) *</td>
<td>Output 1 (OUT1) or Output 3 (OUT3) *</td>
</tr>
</tbody>
</table>

* Output assignment can be overlapped. Overlapped outputs are produced as OR output.

Output assignment list [for Heat/Cool PID control]

<table>
<thead>
<tr>
<th>Control output</th>
<th>Heat-side output</th>
<th>Cool-side output</th>
<th>Alarm 1 output</th>
<th>Alarm 2 output</th>
<th>Heater break alarm 1 (HBA1) output</th>
<th>Heater break alarm 2 (HBA2) output</th>
</tr>
</thead>
<tbody>
<tr>
<td>No assignment</td>
<td>No assignment</td>
<td>Any one of outputs 1, 2, and 3 (OUT1, 2, 3) ¹</td>
<td>Not available</td>
<td>Not available</td>
<td>Not available</td>
<td>Not available</td>
</tr>
<tr>
<td>Output 1 (OUT1)</td>
<td>Output 2 (OUT2)</td>
<td>Output 3 (OUT3) ¹</td>
<td>Output 3 (OUT3) ¹</td>
<td>Output 3 (OUT3) ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output 2 (OUT2)</td>
<td>Output 1 (OUT1)</td>
<td>Output 3 (OUT3) ¹</td>
<td>Output 3 (OUT3) ¹</td>
<td>Output 3 (OUT3) ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output 1 (OUT1)</td>
<td>Output 3 (OUT3) ¹</td>
<td>Output 2 (OUT2) ¹</td>
<td>Output 2 (OUT2) ¹</td>
<td>Output 2 (OUT2) ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output 2 (OUT2)</td>
<td>Output 3 (OUT3) ¹</td>
<td>Output 1 (OUT1) ¹</td>
<td>Output 1 (OUT1) ¹</td>
<td>Output 1 (OUT1) ¹</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Output assignment can be overlapped. Overlapped outputs are produced as OR output.

² When Output 3 (OUT3) is used on the RZ400 as a cool-side output, the operating life of the relay is shorter than that of Output 1 (OUT1) and Output 2 (OUT2).

(Refer to the **Specification of relay contact output** shown above.)

Heater break alarm (HBA) output is an optional function.
Current transformer (CT) input (optional)

- Models that were specified with a current transformer (CT) when ordering can use the following terminal numbers.
 - RZ100: Terminal No. 16 to 18 (CT1, CT2)
 - RZ400: Terminal No. 22 to 24 (CT1, CT2)

- When using CT input, connect CTs to the relevant terminals.
 - Current transformer model code: CTL-6-P-N [Input range: 0 to 30 A] (sold separately)
 - CTL-12-S56-10L-N [Input range: 0 to 100 A] (sold separately)
 - Current transformer (CT) input is not isolated from the measured input.

If the current transformer (CT) was replaced, adjust the CT ratio. (Refer to P. 10-40)

Communication (optional)

- With Communication function, terminals 13 through 15 are allocated to Communication.

For the wiring, refer to 12. COMMUNICATION FUNCTION (P. 12-1).
3.4 Handling of the Terminal Cover (Optional)

When mounting and removing the terminal cover, take the following steps:

⚠️ WARNING

To prevent electric shock or instrument failure, always turn off the power before mounting or removing the terminal cover.

NOTE
When mounting and removing the terminal cover, apply pressure very carefully to avoid damage to the terminal cover.

Mounting procedures
1. Check the mounting direction of the terminal cover.
2. Push the protrusions of terminal cover into the insertion slots for mounting the terminal cover.

This section of RZ400 terminal cover can be removed by bending it. Remove unnecessary part(s) depending on the wiring condition.
Removing procedures

Release the protrusions of terminal cover from the insertion slots (①) shown in the following figure, and then pull the terminal cover (②) to remove it from the case.
BASIC OPERATION AND PARAMETER LIST

This chapter describes basic operations, different types of modes, switching between modes, and changing/storing the set values.

4.1 Mode Types and Switching .. 4-2
 4.1.1 Switching between modes ... 4-2
 4.1.2 Input type and input range display ... 4-3

4.2 Parameter Types and Switching .. 4-4
 4.2.1 Scrolling through parameters .. 4-4
 4.2.2 Parameter list .. 4-8

4.3 Changing Set Value ... 4-18

4.4 Protecting Setting Data .. 4-19
4.1 Mode Types and Switching

4.1.1 Switching between modes

The instrument has five different modes. Modes can be switched through key operations of \(\text{SET} \) and \(\text{K/V} \) keys.

1. **Power ON**
2. **Input type/Input range display** (Refer to P. 4-3)
 - Automatically (in 4 seconds)
3. **Monitor display mode**
 - Parameters such as Measured value (PV), Set value (SV), Alarm status and other parameters can be monitored in this mode. This screen is also used to switch between Control start (RUN) and Stop (STOP). (Refer to P. 4-8)
4. **SV setting mode**
 - In this mode the set value (SV) can be set. Alarm interlock release is also possible in this mode. (Refer to P. 4-8)
5. **Parameter setting mode**
 - Change parameters related to control such as PID values. (Refer to P. 4-10)
6. **Communication setting mode (optional)**
 - In this mode the optional communication related function can be set. (Refer to P. 4-9)
7. **Initial setting mode**
 - In this mode the instrument can be configured to meet the operating requirements. (Refer to P. 4-12)

* To enter the Initial setting mode, you need to set the “Setting data lock” to allow access to the Initial setting mode. For details, refer to 8.3 Restricting Key Operation (P. 8-7).

- If no key operation is performed within 1 minute in the mode other than Initial setting, the Display returns to the PV/SV monitor. If no key operation is performed within 1 minute in the Initial setting mode, the Display returns to the Initial setting code number screen to which it belongs.
- Parameters not included in the specification will not be displayed.
4.1.2 Input type and input range display

As soon as this instrument is powered on, input type and input range will be displayed.

Example: When sensor type is K thermocouple (0 to 400 °C)

![Diagram of input type and input range display]

Table 1: Input type symbol

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Input type</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Thermocouple K</td>
</tr>
<tr>
<td>J</td>
<td>Thermocouple J</td>
</tr>
<tr>
<td>T</td>
<td>Thermocouple T</td>
</tr>
<tr>
<td>S</td>
<td>Thermocouple S</td>
</tr>
<tr>
<td>R</td>
<td>Thermocouple R</td>
</tr>
<tr>
<td>E</td>
<td>Thermocouple E</td>
</tr>
<tr>
<td>B</td>
<td>Thermocouple B</td>
</tr>
<tr>
<td>N</td>
<td>Thermocouple N</td>
</tr>
<tr>
<td>P</td>
<td>Thermocouple PLII</td>
</tr>
<tr>
<td>U</td>
<td>Thermocouple W5Re/W26Re</td>
</tr>
<tr>
<td>U</td>
<td>Thermocouple U</td>
</tr>
<tr>
<td>L</td>
<td>Thermocouple L</td>
</tr>
<tr>
<td>PR</td>
<td>RTD Pt100</td>
</tr>
<tr>
<td>JP</td>
<td>RTD JPt100</td>
</tr>
</tbody>
</table>
4.2 Parameter Types and Switching

4.2.1 Scrolling through parameters

The diagram below shows operating navigation.

Parameters not included in the specification will not be displayed.

For mode switching, refer to 4.1.1 Switching between modes (P. 4-2).
For mode switching, refer to 4.1.1 Switching between modes (P. 4-2).
4. BASIC OPERATION AND PARAMETER LIST

For mode switching, refer to 4.1.1 Switching between modes (P. 4-2).
For mode switching, refer to 4.1.1 Switching between modes (P. 4-2).

- Parameters displayed in the Expanded display mode. (The Expanded display mode can be set in the "Display mode selection" in the Initial setting mode.)
- Parameters displayed in the Expanded display mode. (If display requirements are satisfied)
4.2.2 Parameter list

Monitor display mode

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Display range</th>
<th>Factory set value</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>PV/SV monitor</td>
<td>PV display unit: Measured range low – (5% of Measured range) to Measured range high + (5% of Measured range) For a range with a decimal point, the maximum display range is –199.9 to +999.9. SV display unit 1: Setting limiter low to Setting limiter high Varies with the setting of the Decimal point position.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>AL</td>
<td>Comprehensive alarm state</td>
<td>0: Alarm OFF or No alarm</td>
<td>—</td>
<td>10-48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Alarm ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SV display unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alarm 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alarm 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heater break alarm 1 (HBA1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heater break alarm 2 (HBA2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF1</td>
<td>Current transformer 1 (CT1)</td>
<td>0.0 to 100.0 A</td>
<td>—</td>
<td>10-38</td>
</tr>
<tr>
<td>CF2</td>
<td>Current transformer 2 (CT2)</td>
<td>0.0 to 100.0 A</td>
<td>—</td>
<td>10-38</td>
</tr>
<tr>
<td>BD</td>
<td>Manipulated output value</td>
<td>PID control: Output limiter low to Output limiter high</td>
<td>—</td>
<td>7-15</td>
</tr>
<tr>
<td>BDe</td>
<td>Manipulated output value</td>
<td>–5.0 to Cool-side output limiter (high)</td>
<td>—</td>
<td>7-15</td>
</tr>
<tr>
<td></td>
<td>[cool-side]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Displayed when “Expanded display mode” is selected in the Display mode selection.

1 Set value (SV) is not displayed in the following cases.
 • “SToP” display during STOP is configured to the SV display. (Refer to P. 8-8)
 • Set value (SV) is configured to “hide” in setting show/hide SV. (Refer to P. 8-8)
 • While error exists.

2 Displayed when any selection other than “None” is selected for Alarm 1 type and Alarm 2 type.

3 Displayed when optional “Current transformer (CT) input” is specified at the time of ordering and the Heater break alarm (HBA) set value is other than “0.0.”

4 Displayed when optional “Current transformer (CT) input” is specified at the time of ordering.

5 Displayed when “Heat/Cool PID control” is specified at the time ordering or when the instrument is configured to “Heat/Cool PID control” in the selection of the Control action.

SV setting mode

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Data range</th>
<th>Factory set value</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>Set value (SV) 1</td>
<td>Setting limiter low to Setting limiter high Varies with the setting of the Decimal point position.</td>
<td>0 or 0.0</td>
<td>5-12</td>
</tr>
<tr>
<td>Lr</td>
<td>Interlock release 2</td>
<td>oFF: Interlock release on: Interlock state</td>
<td>oFF</td>
<td>10-21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10-45</td>
</tr>
</tbody>
</table>

1 Not displayed if “Set value (SV): Lock” is selected in the Set data lock. Displays in the following cases.
 • “SToP” display during STOP is configured to the SV display. (Refer to P. 8-8)
 • Set value (SV) is configured to “hide” in setting show/hide SV. (Refer to P. 8-8)
 • While error exists.

2 Displayed when Interlock is used in Alarm 1, 2, or HBA1 or 2.
Communication setting mode

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Data range</th>
<th>Factory set value</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPS</td>
<td>Communication protocol 1</td>
<td>0: RKC communication 1</td>
<td>Communication Protocol specified at the time of ordering.</td>
<td>12-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Modbus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add</td>
<td>Device address 1</td>
<td>RKC communication: 0 to 99 RKC communication: 0 to 99 Modbus 2: 1 to 99</td>
<td>RKC communication: 0 Modbus: 1</td>
<td>12-8</td>
</tr>
<tr>
<td>bPS</td>
<td>Communication speed 1</td>
<td>0: 2400 bps 1: 4800 bps 2: 9600 bps 3: 19200 bps 4: 38400 bps</td>
<td></td>
<td>12-8</td>
</tr>
<tr>
<td>bIT</td>
<td>Data bit configuration 1</td>
<td>Setting</td>
<td>Data bit configuration</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 8 Without 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 8 Without 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 7 Even 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 7 Even 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 7 Odd 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 7 Odd 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 8 Even 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 8 Odd 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 8 Even 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 8 Odd 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 7 Without 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 7 Without 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting range of RKC communication: 0 to 11 Setting range of Modbus 2: 0, 1, 6, 7, 8, 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intf</td>
<td>Interval time 1</td>
<td>0 to 150 (× 1.666 ms)</td>
<td>Actual interval time is set value (0 to 150) multiplied by 1.666 (unit: ms).</td>
<td>5</td>
</tr>
<tr>
<td>Cnrn</td>
<td>Communication response monitor 1</td>
<td>0000 ← SV display unit</td>
<td>Communication response monitor 4: Normal response 1: Overrun error 2: Parity error 4: Framing error 8: Receive buffer overflow Errors are displayed in the hexadecimal format (0 to F). Unused Reception status monitor * Transmission status monitor *</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Each time signal is sent or received, 0 and 1 are displayed in turns.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Displayed when optional “Communication function” is specified at the time of ordering.
2 In Modbus communication, communication is not possible when the address is 0.
3 In Modbus communication, setting 2, 3, 4, 5, 10, or 11 will not establish communication.
4 When two or more errors occur at the same time, the sum of the error numbers are displayed in the hexadecimal format. (Example: In case all of four errors occur, a character “F” is displayed)
Parameter setting mode

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Data range</th>
<th>Factory set value</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL1</td>
<td>Alarm 1 set value (ALM1)</td>
<td>−1999 to +9999 or −199.9 to +999.9 (Unit: °C [°F])</td>
<td>10 or 10.0</td>
<td>5-13 10-2</td>
</tr>
<tr>
<td>AL1'</td>
<td>Alarm 1 set value (ALM1) [high]</td>
<td>Varies with the setting of the Decimal point position.</td>
<td>−10 or −10.0</td>
<td></td>
</tr>
<tr>
<td>AL2</td>
<td>Alarm 2 set value (ALM2)</td>
<td>10 or 10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL2'</td>
<td>Alarm 2 set value (ALM2) [low]</td>
<td>−10 or −10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HbA1</td>
<td>Heater break alarm 1 (HBA1) set value</td>
<td>0.0 to 100.0 A (0.0: HBA function OFF)</td>
<td>0.0</td>
<td>10-32 10-38</td>
</tr>
<tr>
<td>HbA2</td>
<td>Heater break alarm 2 (HBA2) set value</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LbA</td>
<td>Control loop break alarm (LBA) time</td>
<td>0.1 to 200.0 minutes</td>
<td>8.0</td>
<td>10-23</td>
</tr>
<tr>
<td>Lbd</td>
<td>LBA deadband (LBD)</td>
<td>0 to 9999 (Unit: °C [°F])</td>
<td>0</td>
<td>10-29</td>
</tr>
<tr>
<td>AtU</td>
<td>Autotuning (AT)</td>
<td>0: PID control 1: Start Autotuning (AT) When the Autotuning (AT) is finished, the control will automatically return to “0: PID control.”</td>
<td>0</td>
<td>5-14 11-8</td>
</tr>
<tr>
<td>StU</td>
<td>Startup tuning (ST)</td>
<td>0: ST unused 1: Execute once * 2: Execute always * When the Startup tuning (ST) is finished, the control will automatically return to “0: ST unused.”</td>
<td>0</td>
<td>11-10</td>
</tr>
<tr>
<td>P</td>
<td>Proportional band [heat-side]</td>
<td>0 (0.0) to Input span (Unit: °C [°F]) For a scale range with a decimal point, when the input span exceeds the display limit, the maximum value is 999.9. Varies with the setting of the Decimal point position. 0 (0.0): ON/OFF action</td>
<td>30 or 30.0</td>
<td>11-14</td>
</tr>
<tr>
<td>I</td>
<td>Integral time</td>
<td>0 to 3600 seconds (0: PD action)</td>
<td>240</td>
<td>11-14</td>
</tr>
<tr>
<td>D</td>
<td>Derivative time</td>
<td>0 to 3600 seconds (0: PI action)</td>
<td>60</td>
<td>11-14</td>
</tr>
<tr>
<td>AR</td>
<td>Anti-reset windup (ARW)</td>
<td>0 to 100 % of Proportional band [heat-side] (0: Integral action is always OFF)</td>
<td>100</td>
<td>11-14</td>
</tr>
<tr>
<td>F</td>
<td>Proportional cycle time [heat-side]</td>
<td>1 to 100 seconds</td>
<td>Relay contact output: 20 Voltage pulse output: 2</td>
<td>7-8</td>
</tr>
</tbody>
</table>

1. Displayed when Alarm 1 type is set to the type other than “None” and “Monitor during RUN.” When “High/Low individual setting type” (setting: 16, 17, 18, 22) is set for Alarm 1 type, “AL1” becomes Alarm 1 set value (ALM1) [high].
2. Displayed when Alarm 1 type is set to “High/Low individual setting type” (setting: 16, 17, 18, 22).
3. Displayed when Alarm 2 type is set to the type other than “None,” “Monitor during RUN” and “Control loop break alarm (LBA).” When “High/Low individual setting type” (setting: 16, 17, 18, 22) is set for Alarm 2 type, “AL2” becomes Alarm 2 set value (ALM2) [high].
4. Displayed when Alarm 2 type is set to “High/Low individual setting type” (setting: 16, 17, 18, 22).
5. Displayed when optional “Current transformer (CT) input” is specified at the time of ordering.
6. Displayed when “Control loop break alarm (LBA)” is selected for Alarm 2 type.
7. Displayed when output type (which was configured in control output assignment) is “Relay contact output” or “Voltage pulse output.”

Continued on the next page.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_c</td>
<td>Proportional band [cool-side] 1</td>
</tr>
<tr>
<td>db</td>
<td>Overlap/Deadband</td>
</tr>
<tr>
<td>t</td>
<td>Proportional cycle time [cool-side] 1, 2</td>
</tr>
<tr>
<td>P_b</td>
<td>PV bias</td>
</tr>
<tr>
<td>dF</td>
<td>PV digital filter</td>
</tr>
<tr>
<td>$\bar{P}U$</td>
<td>Fine tuning</td>
</tr>
<tr>
<td>$\bar{\tau}$</td>
<td>Minimum ON/OFF time of proportioning cycle [heat-side] 2</td>
</tr>
<tr>
<td>\bar{t}</td>
<td>Minimum ON/OFF time of proportioning cycle [cool-side] 1, 2</td>
</tr>
<tr>
<td>oLH</td>
<td>Output limiter high [Heat-side output limiter (high)]</td>
</tr>
<tr>
<td>oLL</td>
<td>Output limiter low [Cool-side output limiter (high)]</td>
</tr>
<tr>
<td>LCP</td>
<td>Set data lock</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data range</th>
<th>Factory set value</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 1000 % of Proportional band [heat-side] (ON/OFF action of cool-side only is not possible.)</td>
<td>100</td>
<td>11-24</td>
</tr>
<tr>
<td>−10 to +10 or −10.0 to +10.0 (Unit: °C [°F])</td>
<td>0 or 0.0</td>
<td>11-24</td>
</tr>
<tr>
<td>1 to 100 seconds</td>
<td>For “Cooling linear type” configured to have “Voltage pulse output”: 2 Otherwise: 2</td>
<td>7-8</td>
</tr>
<tr>
<td>−1999 to +9999 or −199.9 to +999.9 (Unit: °C [°F])</td>
<td>0 or 0.0</td>
<td>6-7</td>
</tr>
<tr>
<td>0 to 100 seconds (0: Digital filter function OFF)</td>
<td>1</td>
<td>6-8</td>
</tr>
<tr>
<td>−3 to +3 (0: Function OFF)</td>
<td>0</td>
<td>11-29</td>
</tr>
<tr>
<td>0 to 1000 ms</td>
<td>0</td>
<td>7-8</td>
</tr>
<tr>
<td>0 to 1000 ms</td>
<td>0</td>
<td>7-8</td>
</tr>
<tr>
<td>PID control: Output limiter low to 105.0 % (Output limiter high > Output limiter low) Heat/Cool PID control: 0.0 to 105.0 %</td>
<td>105.0</td>
<td>7-6</td>
</tr>
<tr>
<td>PID control: −5.0 % to Output limiter high (Output limiter high > Output limiter low) Heat/Cool PID control: 0.0 to 105.0 %</td>
<td>PID control: −5.0 Heat/Cool PID control: 105.0</td>
<td>7-6</td>
</tr>
<tr>
<td>Parameters in the Parameter setting mode and the Communication setting mode excluding the Set value (SV) and Alarm set values (ALM1, ALM2) 0: Unlock 1: Lock</td>
<td>0000</td>
<td>4-19 8-7</td>
</tr>
<tr>
<td>Alarm set value (ALM1, ALM2) 0: Unlock 1: Lock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set value (SV) 0: Unlock 1: Lock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial setting mode 0: Unlock 1: Lock</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Displayed when “Heat/Cool PID control” is specified at the time ordering or when the instrument is configured to “Heat/Cool PID control” in the selection of the Control action.

2 Displayed when output type (which was configured in control output assignment) is “Relay contact output” or “Voltage pulse output.”
Initial setting mode

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Data range</th>
<th>Factory set value</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cod</td>
<td>Initial setting code 0000</td>
<td>This is the first parameter symbol of Initial setting code 0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Inp** | Input type | 0000: TC input K
0001: TC input J
0010: TC input L
0011: TC input E
0100: TC input N
0101: TC input T
0110: TC input U
0111: TC input R
1000: TC input S
1001: TC input B
1010: TC input W5Re/W26Re
1011: TC input PLII
1100: RTD input Pt100
1101: RTD input JPt100 | When input range code is specified at the time of ordering, the input type in the input range code is the factory setting.
If input range code is not specified: 0000 | 6-2 |
| **Pgdp** | Decimal point position | 0: No decimal place
1: One decimal place
Setting below zero (first decimal place) is possible if the selected input type has a measured range with a decimal place. | When input range code is specified at the time of ordering, the decimal point position in the input range code is the factory setting.
If input range code is not specified: 0 | 6-2 |
| **Pgsh** | Input range high | (Input range low + 1digit) to Measured range high
Varies with the setting of the Decimal point position. | When input range code is specified at the time of ordering, the input range high in the input range code is the factory setting.
If input range code is not specified: 400 | 6-2 |
| **Pglsl** | Input range low | Measured range low to (Input range high – 1digit)
Varies with the setting of the Decimal point position. | When input range code is specified at the time of ordering, the input range low in the input range code is the factory setting.
If input range code is not specified: 0 | 6-2 |
| **Al1** | Alarm 1 type | 0: None
1: Deviation high
2: Deviation high/low
3: Process high
4: Deviation low
5: Low
6: Band
7: Process low
9: Deviation high with re-hold action
10: Deviation high/low with re-hold action
11: Process high with hold action
12: Deviation low with hold action
13: Deviation low with re-hold action
15: Process low with hold action
16: Deviation high/low (High/Low individual setting)
17: Band (High/Low individual setting)
18: Deviation high/low with re-hold action
(High/Low individual setting)
19: Deviation high with hold action
20: Deviation high/low with hold action
21: Deviation low with hold action
22: Deviation high/low with hold action
(High/Low individual setting)
23: SV high
24: SV low
25: Monitor during RUN | When alarm code is specified at the time of ordering, the Alarm type in the alarm code is the factory setting.
If Alarm type is not specified, factory setting depends on the specification (with or without outputs).
If alarm output is assigned, Alarm type is “Deviation high.”
If not assigned, Alarm type is “None.”
For details, refer to 1.3 Model Code (P. 1-4). | 10-8 |

Do not set 4, 8, 12, and 14.
Symbol Name Data range Factory set value Page

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Data range</th>
<th>Factory set value</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALM2</td>
<td>Alarm 2 type</td>
<td>0: None 1: Deviation high 2: Deviation high/low 3: Process high 4: Deviation low 5: Band 6: Process low 7: Deviation high with re-hold action 8: Deviation high/low with re-hold action 9: Process high with hold action 10: Deviation low with re-hold action 11: Process low with hold action 12: Deviation high/low/HI setting 13: Deviation low with re-hold action 14: Deviation high/low/LO setting 15: Process low with hold action 16: Deviation high/low/HI setting (High/Low individual setting) 17: Band (High/Low individual setting) 18: Deviation high/low with re-hold action (High/Low individual setting) 19: Deviation high with hold action 20: Deviation high/low with hold action 21: Deviation low with hold action 22: Deviation high/low/HI setting (High/Low individual setting) 23: SV high 24: SV low 25: Monitor during RUN 26: Control loop break alarm (LBA)</td>
<td>When alarm code is specified at the time of ordering, the Alarm type in the alarm code is the factory setting. If Alarm type is not specified, factory setting depends on the specification (with or without outputs). If alarm output is assigned, Alarm type is “Deviation high.” If not assigned, Alarm type is “None.” For details, refer to 1.3 Model Code (P. 1-4).</td>
<td>10-8</td>
</tr>
</tbody>
</table>

Cod Initial setting code 0001

This is the first parameter symbol of Initial setting code 0001

| Cod | Initial setting code 0001 | This is the first parameter symbol of Initial setting code 0001 | — | — |
| Cod | Initial setting code 0002 | This is the first parameter symbol of Initial setting code 0002 | — | — |

fCu Peak hold monitor of ambient temperature

−120 to +120 °C

TFLH Integrated operating time (upper-digits)

0 to 9999 (×10000) hours

TFLL Integrated operating time (lower-digits)

0 to 9999 hours

— ROM version

PV display: Version number
SV display: Running number

— Model code monitor

Model code is displayed. Display can be scrolled left and right with the Up/Down keys.

— Instrument serial number monitor

Instrument serial number is displayed. Display can be scrolled left and right with the Up/Down keys.

Cod Initial setting code 0002

This is the first parameter symbol of Initial setting code 0002

* If “No assignment” is specified, Heater break alarm (HBA) will be disabled.

Continued on the next page.
Symbol List

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Data range</th>
<th>Factory set value</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>oAL1</td>
<td>Output assignment of Alarm 1</td>
<td>0: No assignment 1: Output 1 (OUT1) * 2: Output 2 (OUT2) * 3: Output 3 (OUT3) *</td>
<td>When Alarm output assignment is specified at the time of ordering, the ordered output assignment is the factory setting. If Alarm output assignment is not specified, factory setting depends on the specification (with or without outputs). For details, refer to 1.3 Model Code (P. 1-4).</td>
<td>7-2</td>
</tr>
<tr>
<td>oAL2</td>
<td>Output assignment of Alarm 2</td>
<td>0: No assignment 1: Output 1 (OUT1) * 2: Output 2 (OUT2) * 3: Output 3 (OUT3) *</td>
<td></td>
<td>7-2</td>
</tr>
<tr>
<td>oHb1</td>
<td>Output assignment of Heater break alarm 1</td>
<td>0: No assignment 1: Output 1 (OUT1) * 2: Output 2 (OUT2) * 3: Output 3 (OUT3) *</td>
<td>When Heater break alarm output assignment is specified at the time of ordering, the ordered output assignment is the factory setting. If Heater break alarm output assignment is not specified: 0</td>
<td>7-2</td>
</tr>
<tr>
<td>oHb2</td>
<td>Output assignment of Heater break alarm 2</td>
<td>* If Output 1 or 2 (OUT1 or 2) is voltage pulse output or current output, assignment of Heater break alarm (HBA) output is ignored.</td>
<td></td>
<td>7-2</td>
</tr>
<tr>
<td>EYC1</td>
<td>energize/de-energize when assigned to alarm</td>
<td>0: Energize 1: De-energize (Contact CLOSE or OPEN, at STOP) *</td>
<td></td>
<td>7-12</td>
</tr>
<tr>
<td>EYC2</td>
<td>energize/de-energize when assigned to alarm</td>
<td>2: De-energize (Contact OPEN, at STOP)</td>
<td></td>
<td>7-12</td>
</tr>
<tr>
<td>EYC3</td>
<td>energize/de-energize when assigned to alarm</td>
<td>* If the controller is not in the alarm state at STOP, contact CLOSE. If the controller is in the alarm state at STOP, contact OPEN.</td>
<td></td>
<td>7-12</td>
</tr>
<tr>
<td>Cod</td>
<td>Initial setting code</td>
<td>This is the first parameter symbol of Initial setting code 0003</td>
<td></td>
<td>7-2</td>
</tr>
<tr>
<td>dSEL</td>
<td>Display mode selection</td>
<td>0: Standard display mode 1: Expanded display mode</td>
<td></td>
<td>9-2</td>
</tr>
<tr>
<td>Cod</td>
<td>Initial setting code</td>
<td>This is the first parameter symbol of Initial setting code 1021</td>
<td></td>
<td>7-2</td>
</tr>
<tr>
<td>Uni γ</td>
<td>Temperature unit</td>
<td>0: °C 1: °F</td>
<td>When input range code is specified at the time of ordering, the temperature unit in the input range code is the factory setting. If input range code is not specified: 0</td>
<td>6-2</td>
</tr>
<tr>
<td>SLH</td>
<td>Setting limiter high</td>
<td>Setting limiter low to Input range high Varies with the setting of the Decimal point position.</td>
<td>Input range high</td>
<td>8-2</td>
</tr>
</tbody>
</table>

1. Displayed when “Expanded display mode” is selected in the Display mode selection.
2. Displayed when Alarm 1 type is set to the type other than “None.”
3. Displayed when Alarm 2 type is set to the type other than “None.”
4. Displayed when optional “Current transformer (CT) input” is specified at the time of ordering.
5. Displayed when Heater break alarm 1 (HBA1) set value is set to any value other than “0.0.”
6. Displayed when Heater break alarm 2 (HBA2) set value is set to any value other than “0.0.”

Continued on the next page.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Data range</th>
<th>Factory set value</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLL</td>
<td>Setting limiter low</td>
<td>Input range low to Setting limiter high</td>
<td>Input range low</td>
<td>8-2</td>
</tr>
<tr>
<td>dSoP</td>
<td>PV flashing display at input error</td>
<td>0: Flashing display 1: Non-flashing display</td>
<td>0</td>
<td>6-10</td>
</tr>
<tr>
<td>dSB</td>
<td>Show/Hide SV display</td>
<td>0: Show SV 1: Hide SV</td>
<td>0</td>
<td>9-6</td>
</tr>
<tr>
<td>Cod</td>
<td>Initial setting code 1030</td>
<td>This is the first parameter symbol of Initial setting code 1030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>Action selection at STOP mode</td>
<td>0: Alarm is cleared at STOP 1: Alarm remains on at STOP SV display unit</td>
<td>0000</td>
<td>10-46</td>
</tr>
<tr>
<td>SPCH</td>
<td>STOP display selection</td>
<td>0: STOP on PV display 1: STOP on SV display</td>
<td>1</td>
<td>9-4</td>
</tr>
<tr>
<td>InS</td>
<td>STOP function at Initial setting mode</td>
<td>0: STOP in the Initial setting mode 1: RUN/STOP continues in the Initial setting mode</td>
<td>0</td>
<td>8-5</td>
</tr>
<tr>
<td>Cod</td>
<td>Initial setting code 1041</td>
<td>This is the first parameter symbol of Initial setting code 1041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALG</td>
<td>Alarm 1 differential gap</td>
<td>0 to 9999 or 0.0 to 999.9 (Unit: °C [°F])</td>
<td>2 or 2.0</td>
<td>10-14</td>
</tr>
<tr>
<td>Abo1</td>
<td>Alarm 1 action at input burnout</td>
<td>0: Alarm output is not forcibly turned ON when the burnout function is activated. 1: ON at over-scale; no action at underscale 2: ON at underscale; no action at over-scale 3: ON at over-scale or underscale 4: OFF at over-scale or underscale</td>
<td>3</td>
<td>6-10</td>
</tr>
<tr>
<td>ALG</td>
<td>Alarm 1 timer</td>
<td>0 to 600 seconds</td>
<td>0</td>
<td>10-16</td>
</tr>
<tr>
<td>AlL1</td>
<td>Alarm 1 interlock</td>
<td>oFF: Unused on: Used</td>
<td>oFF</td>
<td>10-21</td>
</tr>
<tr>
<td>Cod</td>
<td>Initial setting code 1042</td>
<td>This is the first parameter symbol of Initial setting code 1042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALG2</td>
<td>Alarm 2 differential gap</td>
<td>0 to 9999 or 0.0 to 999.9 (Unit: °C [°F])</td>
<td>2 or 2.0</td>
<td>10-14</td>
</tr>
<tr>
<td>Abo2</td>
<td>Alarm 2 action at input burnout</td>
<td>0: Alarm output is not forcibly turned ON when the burnout function is activated. 1: ON at over-scale; no action at underscale 2: ON at underscale; no action at over-scale 3: ON at over-scale or underscale 4: OFF at over-scale or underscale</td>
<td>3</td>
<td>6-10</td>
</tr>
<tr>
<td>ALG2</td>
<td>Alarm 2 timer</td>
<td>0 to 600 seconds</td>
<td>0</td>
<td>10-16</td>
</tr>
<tr>
<td>AlL2</td>
<td>Alarm 2 interlock</td>
<td>oFF: Unused on: Used</td>
<td>oFF</td>
<td>10-21</td>
</tr>
</tbody>
</table>

Displayed when “Expanded display mode” is selected in the Display mode selection.

1 Displayed when Alarm 1 type is set to the type other than “None.”
2 Displayed when Alarm 1 type is set to the type other than “None” and “Monitor during RUN.”
3 Displayed when Alarm 2 type is set to the type other than “None.”
4 Displayed when Alarm 2 type is set to the type other than “None,” “Monitor during RUN” and “Control loop break alarm (LBA).”

Continued on the next page.
4. BASIC OPERATION AND PARAMETER LIST

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Data range</th>
<th>Factory set value</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cod</td>
<td>Initial setting code 1045</td>
<td>This is the first parameter symbol of Initial setting code 1045</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTr1</td>
<td>CT1 ratio 1</td>
<td>1 to 1000</td>
<td>When CTL-6-P-N is specified at the time or ordering: 800</td>
<td>10-40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set the following value depending on the CT type.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>When CTL-12-S56-10L-N is specified at the time or ordering: 1000</td>
<td></td>
</tr>
<tr>
<td>CTr2</td>
<td>CT2 ratio 1</td>
<td>10-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIL1</td>
<td>HBA1 interlock 1</td>
<td>oFF: Unused</td>
<td>on: Used</td>
<td>oFF</td>
</tr>
<tr>
<td>HIL2</td>
<td>HBA2 interlock 1</td>
<td>10-44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HbT</td>
<td>HBA determination time 1</td>
<td>0 to 255 seconds</td>
<td>3</td>
<td>10-42</td>
</tr>
</tbody>
</table>

Initial setting code 1051

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Data range</th>
<th>Factory set value</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>Control action</td>
<td>0: PID control</td>
<td>1: Heat/Cool PID control</td>
<td>When control action is specified at the time of ordering, the ordered code for control action is the factory setting. If control action is not specified: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG</td>
<td>Direct/Reverse action 2</td>
<td>0: PID control: Direct action</td>
<td>1: PID control: Reverse action</td>
<td>When control action is specified at the time of ordering, the ordered code for control action is the factory setting. If Control action is not specified: 1</td>
</tr>
<tr>
<td>Sc</td>
<td>Cool action 3</td>
<td>0: Heat/Cool PID control: Air cooling (for Extruder)</td>
<td>1: Heat/Cool PID control: Water cooling (for Extruder)</td>
<td>When control action is specified at the time of ordering, the ordered code for control action is the factory setting. If Control action is not specified: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2: Heat/Cool PID control: Cooling linear type</td>
<td></td>
<td>11-24</td>
</tr>
<tr>
<td>HH</td>
<td>ON/OFF action differential gap (upper)</td>
<td>0 to 9999 or 0.0 to 999.9 (Unit: °C [°F])</td>
<td>1 or 1.0</td>
<td>11-19</td>
</tr>
<tr>
<td>HL</td>
<td>ON/OFF action differential gap (lower)</td>
<td>Varies with the setting of the Decimal point position</td>
<td></td>
<td>11-19</td>
</tr>
</tbody>
</table>

- Displayed when “Expanded display mode” is selected in the Display mode selection.
- Displayed when optional “Current transformer (CT) input” is specified at the time of ordering.
- Displayed when “PID control” is specified for Control action.
- Displayed when “Heat/Cool PID control” is specified for Control action.

Continued on the next page.
4. BASIC OPERATION AND PARAMETER LIST

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Data range</th>
<th>Factory set value</th>
<th>Page</th>
</tr>
</thead>
</table>
| obo | Control output at burnout | 0: Result of control computation
1: PID control: Output limiter low (output OFF)
Heat/Cool PID control: \(-5.0 \%\) (output OFF) *
* Both heating and cooling outputs are forced OFF. | PID control:
0
Heat/Cool PID control: 1 | 6-10 |
| Cod | Initial setting code 1052 | This is the first parameter symbol of Initial setting code 1052 | | |
| SFS | ST start condition | 0: Activate the ST function when the power is turned on; when transferred from STOP to RUN; or when the Set value (SV) is changed.
1: Activate the ST function when the power is turned on; or when transferred from STOP to RUN.
2: Activate the ST function when the Set value (SV) is changed. | 0 | 11-10 |

* Displayed when “Expanded display mode” is selected in the Display mode selection.
4.3 Changing Set Value

- The highlighted digit indicates which digit can be set. Press the \[SV \] key to go to a different digit. Every time the \[\text{SV} \] key is pressed, the highlighted digit moves as follows.

- The following is also available when changing the set value.

Increase SV from 199 °C to 200 °C:

\[
\begin{array}{c}
28 \\
199
\end{array}
\rightarrow
\begin{array}{c}
28 \\
0.199
\end{array}
\rightarrow
\begin{array}{c}
28 \\
0.200
\end{array}
\]

Decrease SV from 200 °C to 190 °C:

\[
\begin{array}{c}
28 \\
200
\end{array}
\rightarrow
\begin{array}{c}
28 \\
0.200
\end{array}
\rightarrow
\begin{array}{c}
28 \\
0.190
\end{array}
\]

Decrease SV from 200 °C to –100 °C:

\[
\begin{array}{c}
28 \\
200
\end{array}
\rightarrow
\begin{array}{c}
28 \\
0.200
\end{array}
\rightarrow
\begin{array}{c}
28 \\
-100
\end{array}
\]

- To store a new value for the parameter, always press the \[\text{SV} \] key. The display changes to the next parameter and the new value will be stored.

A new value will not be stored without pressing the \[\text{SV} \] key after the new value is displayed on the display.

If no key operation is performed within 1 minute without pressing the \[\text{SV} \] key after the new value has been set by using \[\text{Δ} \] and \[\checkmark \] keys, this instrument returns to the PV/SV monitor display mode if the instrument is in the mode other than Initial setting mode. In case the instrument is in the Initial setting mode, the display goes to the initial setting code number screen to which the displayed screen belongs (For example, in case of Control output assignment, the display goes to the initial setting \(\text{Code 0002} \) screen). In each case the modified value is not stored.
4.4 Protecting Setting Data

To protect setting data in the instrument, the setting data can be locked so that no changes can be made (Set data lock function). The Set data lock function uses the lower three digits of the set value to restrict the setting in the SV setting mode, the Parameter setting mode, and the Communication setting mode. The highest digit is used to show/hide the Initial setting mode.

Perform setting in the Parameter setting mode.

<table>
<thead>
<tr>
<th>Set value</th>
<th>Description of Set Lock</th>
</tr>
</thead>
<tbody>
<tr>
<td>□000</td>
<td>All parameters</td>
</tr>
<tr>
<td>□001</td>
<td>Parameters in the Parameter setting mode and the Communication setting mode excluding the Set value (SV) and Alarm set values (ALM1, ALM2) *</td>
</tr>
<tr>
<td>□010</td>
<td>All parameters except for Alarm 1 set value (ALM1) and Alarm 2 set value (ALM2) *</td>
</tr>
<tr>
<td>□011</td>
<td>Parameters in the Parameter setting mode and the Communication setting mode excluding the Set value (SV)</td>
</tr>
<tr>
<td>□100</td>
<td>All parameters except for Set value (SV)</td>
</tr>
<tr>
<td>□101</td>
<td>Parameters in the Parameter setting mode and the Communication setting mode excluding Alarm set values (ALM1, ALM2) *</td>
</tr>
<tr>
<td>□110</td>
<td>All parameters except for Set value (SV), Alarm 1 set value (ALM1) and Alarm 2 set value (ALM2) *</td>
</tr>
<tr>
<td>□111</td>
<td>No parameter (All Locked)</td>
</tr>
<tr>
<td>0000</td>
<td>Hide Initial setting mode [Factory set value]</td>
</tr>
<tr>
<td>0000</td>
<td>Show Initial setting mode (Show all parameters)</td>
</tr>
</tbody>
</table>

* Values for Control loop break alarm (LBA) time and LBA deadband (LBD) are not included.

- 📋 The following parameters cannot be locked:
 - Interlock release (SV setting mode)
 - Set data lock (Parameter setting mode)

- 📋 The contents of lock mode can be switched anytime regardless of RUN/STOP mode.

- 📋 As the parameters can be viewed even in the lock state, the set data can be verified. However, when the set value (SV) is locked, the SV screen in the SV setting mode will not be displayed. (Refer to P.8-8)

- 📋 Setting through the Communication (optional) is possible even when setting is locked. However, to change parameters in the Initial setting mode, the controller must be set to STOP mode.

- 📋 For details, refer to **8.3 Restricting Key Operation (P. 8-7)**.
This chapter describes Operating precautions, Setup procedures and Parameter setting that are required before operation.

5.1 Operating Precautions ... 5-2
5.2 Setup Procedures ... 5-4
5.3 Initial Setup before Operation ... 5-5
 5.3.1 Initial setting of setup example 1
 (Setting parameters related to the alarm) 5-6
 5.3.2 Initial setting of setup example 2
 (Setting parameters related to the input, control, output and alarm) ... 5-8
5.4 Setting the Control Set Value [Set value (SV)] 5-12
5.5 Setting the Alarm Set Value .. 5-13
5.6 Tuning the PID Parameters (Execution of AT) 5-14
5.1 Operating Precautions

Before starting the operation, check the following items.

■ Power ON

As soon as the instrument is powered up, operation is started after the display of the input type and the input range.

■ Action at input error

In case of input failure this instrument provides the following behaviors and output.

- **Action at input break**
 - Thermocouple input: Upscale
 - RTD input: Upscale

- **Action at input short-circuit**
 - RTD input: Downscale

- **Action at input burnout**
 - Control output at burnout (Initial setting mode) [Refer to P. 6-11]:
 - Result of control computation
 - PID control: Output limiter low (output OFF)
 - Heat/Cool PID control: –5.0 % (output OFF) *
 - * On the Heat/Cool PID control type, both heating and cooling outputs are off.
 - Alarm action at input burnout (Initial setting mode) [Refer to P. 6-11]:
 - Alarm output is not forcibly turned ON when the burnout function is activated.
 - ON at over-scale; no action at underscale
 - ON at underscale; no action at over-scale
 - ON at over-scale or underscale
 - OFF at over-scale or underscale

■ Checking each parameter

- The settings for the Set value (SV) and all parameters should be appropriate for the controlled system.
- With the factory setting, all parameters cannot be verified. Switch the mode to “Expanded display mode,” then the parameters not displayed can be seen. Some parameters may not be displayed if display requirements are not met.
- With the factory setting, control is stopped if the mode is switched to the Initial setting mode. It is possible to verify the parameters in the Initial setting mode without stopping the control. However, to change the parameters in the Initial setting mode, the control needs to be stopped, because the parameters in the Initial setting mode cannot be changed while the control is running.

Refer to 4. BASIC OPERATION AND PARAMETER LIST (P. 4-1) and chapters 6 to 11 for switching between each mode and details of parameters.

For switching to the Expanded display mode, refer to 9.1 Releasing the Display Restriction of the Parameters (P. 9-2).

For continuing the control in the Initial setting mode, refer to 8.2 Continuing the Control when Entering the Initial Setting Mode (P. 8-5).
5. OPERATION

- Alarm hold action
 - The Alarm hold action is activated when the power is turned on or when transferred from STOP mode to RUN mode. (in case of “with hold action”)
 - The Alarm re-hold action is activated when not only the Set value (SV) is changed, but also the power is turned on or when transferred from STOP mode to RUN mode. (in case of “with re-hold action”)

- Operation at power failure
 A power failure of 20 ms or less will not affect the control action (at 100 V AC). When a power failure of more than 20 ms occurs the instrument assumes that the power has been turned off. The instrument restarts from the mode operated prior to the power failure.
5. OPERATION

5.2 Setup Procedures

Setup the controller prior to operating the instrument. Refer to the following setup example.

Setup example 1

Input: Thermocouple (K), 0 to 400 °C
Control: PID control with AT (reverse action)
Output: Control output: Uses Output 1 (OUT1)
 Alarm output: Uses Output 3 (OUT3)
Alarm: Number of alarm points: 1 point
 (Uses Alarm 1)
 Deviation high/low with hold action
 Without interlock function
Control set value: 200.0 °C
Alarm set value: 10.0 °C
PID constants: Automatic setting by Autotuning (AT)

Setup example 2

Input: RTD (Pt100), 0.0 to 300.0 °C
Control: Heat/Cool PID control with AT (air cooling)
Output: Control output: Heat-side: Uses Output 1 (OUT1)
 Cool-side: Uses Output 2 (OUT2)
 Alarm output: Uses Output 3 (OUT3)
 (Shared between Alarm 1 and Alarm 2)
Alarm: Number of alarm points: 2 points
 (Uses Alarm 1 and Alarm 2)
 Alarm 1 type: Deviation high
 Alarm 2 type: Deviation low
 Uses interlock function
Control set value: 100.0 °C
Alarm set value: Alarm 1: 10.0 °C, Alarm 2: −10.0 °C
PID constants: Automatic setting by Autotuning (AT)

: Values to be set in the Initial setting

Power ON

Initial Setting

Setup example 1

Set the parameters related to alarm

Setup example 2

Set the parameters related to input, control, output and alarm

Operation Setting

Set the control set value

Set the alarm set value

Operation Start

Tuning the PID parameters (Execution of AT)

Operation

For operation in initial setting (Initial setting mode), refer to 5.3 Initial Setup before Operation (P. 5-5).

For operation setting, refer to the following:

- 5.4 Setting the Control Set Value [Set value (SV)] (P. 5-12)
- 5.5 Setting the Alarm Set Value (P. 5-13)

For starting the operation, refer to 5.6 Tuning the PID Parameters (Execution of AT) (P. 5-14).
5.3 Initial Setup before Operation

Before starting the operation, confirm that the set value of the parameter matches the model code as specified when ordered. Parameters which were not specified when ordered must be set before use. Some functions may need to be set in the Initial setting mode. Read the following part before attempting the setting.

⚠️ WARNING

Parameters in the Initial setting mode should be set according to the application before setting any parameters related to operation. Once the parameters in the Initial setting mode are set correctly, no further changes need to be made to the parameters for the same application under normal conditions. If they are changed unnecessarily, it may result in malfunction or failure of the instrument. RKC will not bear any responsibility for malfunction or failure as a result of improper changes in the Initial setting mode.

💡 NOTE

To make setting in the Initial setting mode, control needs to be stopped (STOP). With the factory setting, control is stopped when the mode is switched to the Initial setting mode. When the mode is switched back to the Monitor display mode from the Initial setting mode, control is started (RUN) again.

Control can be set to continue after switching to the Initial setting mode. For details, refer to 8.2 Continuing the Control when Entering the Initial Setting Mode (P. 8-5). Even if the control is set to continue in the Initial setting mode, the Initial setting mode still requires the control to be stopped (STOP). Switching between RUN and STOP can be made only in the Monitor display mode.

Set value change and registration

- The highlighted digit indicates which digit can be set. The highlighted digit can be shifted by pressing the key.
- However, the changed data is not stored by the operation of the and keys alone. In order to store the new parameter value, the key must be pressed. within 1 minute after the new value is displayed. The new value will then be saved and the display will move to the next parameter.
- In any mode other than the Initial setting mode, if no registration is made within 1 minute after the change, the display returns to the PV/SV monitor. In such a case the changed data is not stored.
- In the Initial setting mode, if no registration operation is made within 1 minute after the change, the display returns to the Initial setting code number screen to which the displayed parameter belongs (For example, in case of the Control output assignment screen, the display returns to the initial setting code 0002 screen). The changed data will not be stored in this case either.
5.3.1 Initial setting of setup example 1
(Setting parameters related to the alarm)

In the Setup example 1 (refer to P. 5-4), all default factory set values except alarm related parameters can be used in actual applications without any changes.

This section describes the Initial setting of the alarm related operation used in the Setup example 1.

Parameters to be set (Initial setting mode):
- Mandatory setting items:
 Cod 0000: Alarm 1 type
- Related setting items (Set only when necessary):
 Cod 1041: Alarm 1 differential gap, Alarm 1 action at input burnout, Alarm 1 timer
- Items unnecessary to set (Used with factory setting):
 Cod 0002: Output assignment of Alarm 1
 [Alarm 1 is assigned to Output 3 (OUT3)]
 Cod 1041: Alarm 1 interlock
 [Alarm 1 interlock is disabled]

Power ON

Procedure to enter the Initial setting mode

Control is stopped (STOP)

Next parameter is displayed.

Press the key for 2 seconds or more while pressing the key to return to the PV/SV monitor screen.

Control is started (RUN)

Set the highest digit of Set data lock to “0: Lock.”
From Cod 0000

Initial setting mode
Initial setting code

Cod 0003

Display mode selection

Set “1: Expanded display mode”

dSEL 0001

Next parameter is displayed.

Set the “Display mode selection” at Cod 0003 in the Initial setting mode to “0: Standard display mode.”

Press the \[\text{R/S}\] key for 2 seconds or more while pressing the \[\text{SET}\] key to return to the PV/SV monitor screen.

Set the highest digit of Set data lock to “0: Lock.”
5.3.2 Initial setting of setup example 2
(Setting parameters related to the input, control, output and alarm)

The setup example 2 (refer to P. 5-4) describes the initial setting of input, control, output and alarm action.

Parameters to be set (Initial setting mode):
- **Mandatory setting items:**
 - Cod 0000: Input type, Decimal point position, Input range high, Input range low, Alarm 1 type, Alarm 2 type
 - Cod 0002: Control output assignment, Output assignment of Alarm 1, Output assignment of Alarm 2
 - Cod 1021: Temperature unit
 - Cod 1041: Alarm 1 interlock
 - Cod 1042: Alarm 2 interlock
 - Cod 1051: Control action, Cool action
- **Related setting items (Set only when necessary):**
 - Cod 0002: Output 3 (OUT3) energize/de-energize when assigned to alarm
 - Cod 1021: Setting limiter high, Setting limiter low, PV flashing display at input error
 - Cod 1041: Alarm 1 differential gap, Alarm 1 action at input burnout, Alarm 1 timer
 - Cod 1042: Alarm 2 differential gap, Alarm 2 action at input burnout, Alarm 2 timer
 - Cod 1051: Control output at burnout

Power ON

Procedure to enter the Initial setting mode

![Diagram showing the procedure to enter the Initial setting mode](image-url)
5. OPERATION

From Parameter setting mode

Initial setting mode
Initial setting code

Set Input type. 1100: RTD input Pt100

Input type

Decimal point position

Input range high

Set Input range high 300.0
[Setting range: 0.0 to 649.0 °C]

Initial setting mode
Initial setting code

Twice

Alarm 2 type

Set Alarm 2 type 5: Deviation low

Alarm 1 type

Set Alarm 1 type 1: Deviation high

Input range low

Set Input range low 0.0
[Setting range: 0.0 to 649.0 °C]

Initial setting mode
Initial setting code

Control output assignment

Set Control output assignment
1: Heat-side output: Output 1 (OUT1)
Cool-side output: Output 2 (OUT2)

Output assignment of Alarm 1

Set Output assignment of Alarm 1 3: Output 3 (OUT3)

Output assignment of Alarm 2

Set Output assignment of Alarm 2 3: Output 3 (OUT3)

Output 3 (OUT3) energize/de-energize when assigned to alarm

Set Output 3 (OUT3) energize/de-energize when assigned to alarm
0: Energize

Initial setting mode
Initial setting code

Display mode selection

Set "1: Expanded display mode”

To Cod 1021
5. OPERATION

From Cod 0003

Initial setting mode
Initial setting code

Temperature unit
Set Temperature unit
0: °C

Setting limiter high
Set Setting limiter high
300.0
[Setting range: Setting limiter low to Input range high]

Setting limiter low
Set Setting limiter low
0.0
[Setting range: Input range low to Setting limiter high]

Alarm 1 differential gap
Set Alarm 1 differential gap
2.0
[Setting range: 0.0 to 999.9 °C]

Alarm 1 action at input burnout
Set Alarm 1 action at input burnout
3: ON at over-scale or underscale

Alarm 1 timer
Set Alarm 1 timer
0
[Setting range: 0 to 600 seconds]

Alarm 1 interlock
Set Alarm 1 interlock
on: Used

Alarm 2 differential gap
Set Alarm 1 differential gap
2.0
[Setting range: 0.0 to 999.9 °C]

Alarm 2 action at input burnout
Set Alarm 2 action at input burnout
3: ON at over-scale or underscale

Alarm 2 timer
Set Alarm 2 timer
0
[Setting range: 0 to 600 seconds]

Alarm 2 interlock
Set Alarm 2 interlock
on: Used

To Cod 1051
From Cod 1042

Initial setting mode
Initial setting code

Control action

Set Control action
1: Heat/Cool PID control

Cool action

Set Cool action
0: Air cooling
(for Extruder)

Control output at burnout

Set Control output at burnout
0: Result of control computation

Setting End

- Next parameter is displayed.
- Set the “Display mode selection” at Cod 0003 in the Initial setting mode to “0: Standard display mode.”
- Press the key for 2 seconds or more while pressing the key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
5.4 Setting the Control Set Value [Set value (SV)]

After finishing the initial settings, set the control target value, SV.

[Setting example: Set the set value (SV) to 200 °C.]

1. **Switch the display to the Set value (SV) setting mode**

 Press the key to switch the display to the SV setting screen from the PV/SV monitor.

2. **Shift the highlighted digit to the hundreds digit**

 Press key to shift the highlighted digit to the hundreds digit.
 The highlighted digit indicates which digit can be set.

3. **Change the numerical value from “0” to “2”**

 Press the key twice to change the numerical value from “0” to “2.”

 Setting range:
 - Setting limiter low to Setting limiter high
 - Varies with the setting of the Decimal point position.

 Factory set value: 0

4. **Store the set value (SV)**

 Press the key to store the set value.
 The display changes to the next parameter.

 The parameter displayed after the set value (SV) varies depends on the product specifications.

Set value change and registration

- The highlighted digit indicates which digit can be set. The highlighted digit can be shifted by pressing the key.
- However, the changed data is not stored by the operation of the and keys alone. In order to store the new parameter value, the key must be pressed within 1 minute after the new value is displayed. The new value will then be saved and the display will move to the next parameter.
- In any mode other than the Initial setting mode, if no registration is made within 1 minute after the change, the display returns to the PV/SV monitor. In such a case the changed data is not stored.
5.5 Setting the Alarm Set Value

After finishing the initial settings, set the alarm set values if they are used.

[Setting example: Set the Alarm 1 set value (ALM1) to 20 °C.]

1. Switch the mode to the Parameter setting mode
 [Switch the screen to Alarm 1 set value (ALM1)]
 Press and hold the \(\text{\#} \) key for 2 seconds or more on the PV/SV monitor screen until Parameter setting mode is displayed.
 The first screen in the Parameter setting mode is Alarm 1 set value (ALM1).

2. Shift the highlighted digit to the tens digit
 Press the \(\text{\#} \) key to shift the highlighted digit to the tens digit. The highlighted digit indicates which digit can be set.

3. Change the numerical value from “1” to “2”
 Press the \(\text{\#} \) key once to change the numerical value from “1” to “2.”
 Setting range:
 -1999 to +9999 or -199.9 to +999.9
 (Unit: °C [°F])
 Varies with the setting of the Decimal point position.
 Factory set value: 10

4. Store the Alarm 1 set value
 Press the \(\text{\#} \) key to store the set value. The display changes to the next parameter.

Set value change and registration
- The highlighted digit indicates which digit can be set. The highlighted digit can be shifted by pressing the \(\text{\#} \) key.
- However, the changed data is not stored by the operation of the \(\text{\#} \) and \(\text{\#} \) keys alone. In order to store the new parameter value, the \(\text{\#} \) key must be pressed within 1 minute after the new value is displayed. The new value will then be saved and the display will move to the next parameter.
- In any mode other than the Initial setting mode, if no registration is made within 1 minute after the change, the display returns to the PV/SV monitor. In such a case the changed data is not stored.
5.6 Tuning the PID Parameters (Execution of AT)

Suitable PID values are automatically calculated by Autotuning (AT) function. The Autotuning (AT) function automatically measures, computes and sets the optimum PID values.

Before starting the Autotuning, make sure that all required conditions to start the AT are satisfied. (Refer to 11.3 Setting PID Values Automatically (Autotuning) [P. 11-8])

1. Switch the mode to the Parameter setting mode

Press and hold the key for 2 seconds or more on the PV/SV monitor screen until Parameter setting mode is displayed. The first screen in the Parameter setting mode is Alarm 1 set value (ALM1). (If alarm is supplied)

2. Switch the display to the Autotuning (AT)

Press the key until the Autotuning (AT) is displayed. The number of available displays depends on the specification.

3. Change the numerical value from “0” to “1”

Press the key to change the numerical value from “0” to “1.”

Setting range: 0: PID control 1: Start Autotuning (AT)

Factory set value: 0

4. Start the Autotuning (AT)

Press the key to store the set value. The display shows the next parameter and the autotuning (AT) is started. The Autotuning (AT) lamp starts flashing.

5. Finish the Autotuning (AT)

When the Autotuning (AT) is finished, the control will automatically return to “0: PID control” and the AT lamp turns off.
When canceling the Autotuning (AT) function, press the key to be set to “0: PID control” with the Autotuning (AT) screen.

To return to the PV/SV monitor, press and hold the key for 2 seconds or more.

If no key operation is performed within 1 minute, the display returns to the PV/SV monitor screen. If the Autotuning (AT) is not completed yet at this moment, the Autotuning (AT) continues even after the display has returned to the PV/SV monitor.
This chapter describes input related functions, setting contents and setting procedure based on the key words related to inputs.

6.1 Changing Input.. 6-2
6.2 Correcting Input .. 6-7
6.3 Preventing the Input Flicker .. 6-8
6.4 Changing Error Handling at Input Error............................ 6-10
6. INPUT FUNCTION

6.1 Changing Input

Measured input can be changed at following parameters. Set the input according to the sensor and the application.

- Input type
- Decimal point position
- Input range high/Input range low
- Temperature unit

Description of function

Input range high/low

High and low limits of the input range can be changed within the measured range.

(Example of input change 1:
Changing thermocouple K “−200 to +1372 °C” to “0 to 400 °C”

Example of input change 2:
When a range of −200 to +1372 °C with a type K thermocouple input is changed from “No decimal place” to “One decimal place,” the measured range is changed to −199.9 to +800.0 °C. For a thermocouple input K with a range with one decimal place, the maximum measured range is limited to −199.9 to +800.0 °C.

NOTE
Changing a Decimal point position changes the input resolution.
6. INPUT FUNCTION

■ Parameter setting

 REFER to the Measured range table (P. 6-5) for the measured range of each input type.

 REFER For the input range code, refer to Input range code table (P. 6-5).

● Input type
[Initial setting mode: \textit{Cod 0000}]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{InP}</td>
<td>0000: TC input K 0001: TC input J 0010: TC input E 0011: TC input N 0100: TC input T 0101: TC input U 0110: TC input R 0111: TC input S 1000: TC input B 1001: RTD input Pt100 1002: RTD input JPt100</td>
<td>When input range code is specified at the time of ordering, the input type in the input range code is the factory setting. If input range code is not specified: 0000</td>
</tr>
</tbody>
</table>

Some parameters are initialized when Input type is changed. Refer to appendix A.1 Parameters to be Initialized/Changed at the time of changing set values (P. A-2).

● Decimal point position
[Initial setting mode: \textit{Cod 0000}]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{PGdP}</td>
<td>0: No decimal place 1: One decimal place Setting below zero (first decimal place) is possible if the selected input type has a measured range with a decimal place.</td>
<td>When input range code is specified at the time of ordering, the decimal point position in the input range code is the factory setting. If input range code is not specified: 0</td>
</tr>
</tbody>
</table>

Changing a Decimal point position changes the input resolution.

 Range of some parameters are limited when a Decimal point position is changed. Refer to appendix A.1 Parameters to be Initialized/Changed at the time of changing set values (P. A-2).

● Input range high
[Initial setting mode: \textit{Cod 0000}]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{PGSH}</td>
<td>(Input range low + 1 digit) to Measured range high Varies with the setting of the Decimal point position.</td>
<td>When input range code is specified at the time of ordering, the input range high in the input range code is the factory setting. If input range code is not specified: 400</td>
</tr>
</tbody>
</table>

When the input range is changed, it is recommended to set a value within the specified range shown in the measured range table. Setting a value outside the described range may change the input resolution.

 Some parameters are limited when Input range high limit or low limit is changed. Refer to appendix A.1 Parameters to be Initialized/Changed at the time of changing set values (P. A-2).
6. INPUT FUNCTION

● Input range low
[Initial setting mode: Code 0000]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGSL</td>
<td>Measured range low to (Input range high – 1 digit)</td>
<td>When input range code is specified at the time of ordering, the input range low in the input range code is the factory setting.</td>
</tr>
<tr>
<td></td>
<td>Varies with the setting of the Decimal point position.</td>
<td>If input range code is not specified: 0</td>
</tr>
</tbody>
</table>

NOTE
When the input range is changed, it is recommended to set a value within the specified range shown in the measured range table. Setting a value outside the described range may change the input resolution.

Some parameters are limited when Input range high limit or low limit is changed. Refer to appendix A.1 Parameters to be Initialized/Changed at the time of changing set values (P. A-2).

● Temperature unit
[Initial setting mode: Code 1021]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIT</td>
<td>0: °C 1: °F</td>
<td>When input range code is specified at the time of ordering, the temperature unit in the input range code is the factory setting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If input range code is not specified: 0</td>
</tr>
</tbody>
</table>

NOTE
Changing a temperature unit changes the input resolution.

To show the “Temperature unit,” enter the Expanded display mode by setting the “Display mode selection” at Code 0003 in the Initial setting mode.

Some parameters are limited when Temperature unit is changed. Refer to appendix A.1 Parameters to be Initialized/Changed at the time of changing set values (P. A-2).
Measured range table

TC input

<table>
<thead>
<tr>
<th>Input type</th>
<th>Measured range</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>-200 to +1372 °C</td>
</tr>
<tr>
<td></td>
<td>-199.9 to +400.0 °C</td>
</tr>
<tr>
<td></td>
<td>-199.9 to +800.0 °C</td>
</tr>
<tr>
<td>J</td>
<td>-200 to +1200 °C</td>
</tr>
<tr>
<td></td>
<td>-199.9 to +300.0 °C</td>
</tr>
<tr>
<td>T</td>
<td>-200 to +400 °C</td>
</tr>
<tr>
<td></td>
<td>-199.9 to +300.0 °C</td>
</tr>
<tr>
<td></td>
<td>-199.9 to +400.0 °C</td>
</tr>
<tr>
<td>S</td>
<td>0 to 1769 °C</td>
</tr>
<tr>
<td>R</td>
<td>0 to 1769 °C</td>
</tr>
<tr>
<td>E</td>
<td>0 to 1000 °C</td>
</tr>
<tr>
<td>B</td>
<td>0 to 1820 °C</td>
</tr>
<tr>
<td>N</td>
<td>0 to 1300 °C</td>
</tr>
<tr>
<td>PL</td>
<td>0 to 1390 °C</td>
</tr>
<tr>
<td>W5Re/W26Re</td>
<td>0 to 2320 °C</td>
</tr>
<tr>
<td>U</td>
<td>-200 to +600 °C</td>
</tr>
<tr>
<td>L</td>
<td>0 to 900 °C</td>
</tr>
</tbody>
</table>

RTD input

<table>
<thead>
<tr>
<th>Input type</th>
<th>Measured range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt100</td>
<td>-200 to +649 °C</td>
</tr>
<tr>
<td>JPt100</td>
<td>-200 to +649 °C</td>
</tr>
<tr>
<td></td>
<td>-199.9 to +999.9 °C</td>
</tr>
</tbody>
</table>

Measured range table and Input range code table

The measured range table shows the measured range of each input by the temperature unit and a decimal point position. Input resolution depends on the range.

The range code table is a list of input range codes so that a user can specify the input range at the time of ordering.

Even if the input range has been specified when ordered, the input range can be changed later within the measured range.

Input range code table (Input ranges specifiable at ordering)

TC input

<table>
<thead>
<tr>
<th>Input type</th>
<th>Code</th>
<th>Range</th>
<th>Input type</th>
<th>Code</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>K01</td>
<td>0 to 200 °C</td>
<td>J</td>
<td>J01</td>
<td>0 to 200 °C</td>
</tr>
<tr>
<td></td>
<td>K02</td>
<td>0 to 400 °C</td>
<td></td>
<td>J02</td>
<td>0 to 400 °C</td>
</tr>
<tr>
<td></td>
<td>K03</td>
<td>0 to 600 °C</td>
<td></td>
<td>J03</td>
<td>0 to 600 °C</td>
</tr>
<tr>
<td></td>
<td>K04</td>
<td>0 to 800 °C</td>
<td></td>
<td>J04</td>
<td>0 to 800 °C</td>
</tr>
<tr>
<td></td>
<td>K05</td>
<td>0 to 1000 °C</td>
<td></td>
<td>J05</td>
<td>0 to 1000 °C</td>
</tr>
<tr>
<td></td>
<td>K06</td>
<td>0 to 1200 °C</td>
<td></td>
<td>J06</td>
<td>0 to 1200 °C</td>
</tr>
<tr>
<td></td>
<td>K07</td>
<td>0 to 1372 °C</td>
<td></td>
<td>J07</td>
<td>-199.9 to +300.0 °C</td>
</tr>
<tr>
<td></td>
<td>K09</td>
<td>0.0 to 400.0 °C</td>
<td></td>
<td>T</td>
<td>T01</td>
</tr>
<tr>
<td></td>
<td>K10</td>
<td>0.0 to 800.0 °C</td>
<td></td>
<td>T02</td>
<td>-199.9 to +100.0 °C</td>
</tr>
<tr>
<td></td>
<td>K13</td>
<td>0.0 to 100.0 °C</td>
<td></td>
<td>T03</td>
<td>-100.0 to +200.0 °C</td>
</tr>
<tr>
<td></td>
<td>K14</td>
<td>0.0 to 300.0 °C</td>
<td></td>
<td>T04</td>
<td>0.0 to 350.0 °C</td>
</tr>
<tr>
<td></td>
<td>K17</td>
<td>0.0 to 450.0 °C</td>
<td></td>
<td>T05</td>
<td>-199.9 to +300.0 °C</td>
</tr>
<tr>
<td></td>
<td>K20</td>
<td>0.0 to 500.0 °C</td>
<td></td>
<td>T06</td>
<td>0.0 to 400.0 °C</td>
</tr>
<tr>
<td></td>
<td>K41</td>
<td>-200 to +1372 °C</td>
<td></td>
<td>R</td>
<td>R01</td>
</tr>
<tr>
<td></td>
<td>K43</td>
<td>-199.9 to +400.0 °C</td>
<td></td>
<td>R02</td>
<td>0.0 to 1769 °C</td>
</tr>
<tr>
<td></td>
<td>KA1</td>
<td>0.0 to 800 °F</td>
<td></td>
<td>R04</td>
<td>0.0 to 1350 °C</td>
</tr>
<tr>
<td></td>
<td>KA2</td>
<td>0.0 to 1600 °F</td>
<td></td>
<td>RA1</td>
<td>0.0 to 3200 °F</td>
</tr>
<tr>
<td></td>
<td>KC8</td>
<td>-100.0 to +752.0 °F</td>
<td></td>
<td>S</td>
<td>S01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S02</td>
<td>0.0 to 1769 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>B01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B02</td>
<td>0.0 to 1820 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>E01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E02</td>
<td>0.0 to 1000 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>N01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W5Re/W26Re</td>
<td>W01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WA1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PLII</td>
<td>A01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AA1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AA2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
</tbody>
</table>

RTD input

<table>
<thead>
<tr>
<th>Input type</th>
<th>Code</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt100</td>
<td>D01</td>
<td>-199.9 to +649.0 °C</td>
</tr>
<tr>
<td></td>
<td>D02</td>
<td>-199.9 to +200.0 °C</td>
</tr>
<tr>
<td></td>
<td>D03</td>
<td>0.0 to +50.0 °C</td>
</tr>
<tr>
<td></td>
<td>D04</td>
<td>0.0 to +100.0 °C</td>
</tr>
<tr>
<td></td>
<td>D05</td>
<td>0.0 to +200.0 °C</td>
</tr>
<tr>
<td></td>
<td>D06</td>
<td>0.0 to 50.0 °C</td>
</tr>
<tr>
<td></td>
<td>D07</td>
<td>0.0 to 100.0 °C</td>
</tr>
<tr>
<td></td>
<td>D08</td>
<td>0.0 to 200.0 °C</td>
</tr>
<tr>
<td></td>
<td>D09</td>
<td>0.0 to 300.0 °C</td>
</tr>
<tr>
<td></td>
<td>D10</td>
<td>0.0 to 500.0 °C</td>
</tr>
<tr>
<td></td>
<td>DA1</td>
<td>-199.9 to +999.9 °C</td>
</tr>
<tr>
<td></td>
<td>DA2</td>
<td>-199.9 to +200.0 °C</td>
</tr>
<tr>
<td></td>
<td>DA4</td>
<td>-199.9 to +100.0 °C</td>
</tr>
<tr>
<td></td>
<td>DA5</td>
<td>-199.9 to +300.0 °C</td>
</tr>
<tr>
<td></td>
<td>DA6</td>
<td>0.0 to 100.0 °C</td>
</tr>
<tr>
<td></td>
<td>DA8</td>
<td>0.0 to 400.0 °F</td>
</tr>
<tr>
<td></td>
<td>DA9</td>
<td>0.0 to 500.0 °F</td>
</tr>
<tr>
<td>JPt100</td>
<td>DB2</td>
<td>-199.9 to +900.0 °F</td>
</tr>
<tr>
<td></td>
<td>P01</td>
<td>-199.9 to +649.0 °C</td>
</tr>
<tr>
<td></td>
<td>P02</td>
<td>-199.9 to +200.0 °C</td>
</tr>
<tr>
<td></td>
<td>P04</td>
<td>0.0 to +100.0 °C</td>
</tr>
<tr>
<td></td>
<td>P05</td>
<td>0.0 to +200.0 °C</td>
</tr>
<tr>
<td></td>
<td>P06</td>
<td>0.0 to 50.0 °C</td>
</tr>
<tr>
<td></td>
<td>P07</td>
<td>0.0 to 100.0 °C</td>
</tr>
<tr>
<td></td>
<td>P08</td>
<td>0.0 to 200.0 °C</td>
</tr>
<tr>
<td></td>
<td>P09</td>
<td>0.0 to 300.0 °C</td>
</tr>
<tr>
<td></td>
<td>P10</td>
<td>0.0 to 500.0 °F</td>
</tr>
</tbody>
</table>
Setting procedure

- Input type, Decimal point position and Input range high/low can be set at \texttt{Cod 0000} in the Initial setting mode.
- Temperature unit can be set at \texttt{Cod 1021} in the Initial setting mode.

Procedure to enter the Initial setting mode

1. Set \texttt{Input type} at \texttt{Cod 0000} in the Initial setting mode.
2. Set the highest digit of Set data lock to “0: Lock.”
3. Press the SET key repeatedly till LCK appears.
4. Press the \texttt{LCK} key for 2 seconds or more while pressing the SET key to enter the Initial setting mode display.
5. Press the SET key for 2 seconds or more while pressing the \texttt{LCK} key to return to the PV/SV monitor screen.
6. Set the “Display mode selection” at \texttt{Cod 0003} in the Initial setting mode to “0: Standard display mode.”
7. Press the SET key for 2 seconds or more while pressing the \texttt{LCK} key to return to the PV/SV monitor screen.
8. Set the highest digit of Set data lock to “0: Lock.”
9. Next parameter is displayed.
10. Set the “Display mode selection” at \texttt{Cod 0001} in the Initial setting mode to “1: Expanded display mode.”
11. Press the SET key for 2 seconds or more while pressing the \texttt{LCK} key to return to the PV/SV monitor screen.
12. Set the highest digit of Set data lock to “0: Lock.”
13. Temperature unit remains unchanged.

Monitor display mode

- PV/SV monitor

Parameter setting mode

- Alarm 1 set value

Set data lock

- LCK

Initial setting mode display

- Set “1”

Display mode selection

- Set “1: Expanded display mode”
6.2 Correcting Input

PV bias can be used for Input correction. The PV bias is used to compensate the individual variations of the sensors or correct the difference between the Measured value (PV) of other instruments.

- **Description of function**
 - **PV bias**

PV bias adds bias to the Measured value (PV).

Setting example of PV bias:

When measuring the same type of load by using different sensors, the Measured value (PV) will be displayed differently based on the features of sensors:

- RZ400 [A]: 200 °C
- RZ400 [B]: 198 °C

To correct the Measured value (PV) of RZ400 [B], add bias of +2 °C by PV bias:

Displayed value = Measured value (PV) + PV bias = 198 °C + 2 °C = 200 °C

- **Parameter setting**
 - **PV bias**

 [Parameter setting mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_b</td>
<td>(-1999 \text{ to } +9999 \text{ or } -199.9 \text{ to } +999.9) (Unit: °C [°F])</td>
<td>0 or 0.0</td>
</tr>
</tbody>
</table>

Variates with the setting of the Decimal point position.

- **Setting procedure**

PV bias can be set in Parameter setting mode.

- Next parameter is displayed.
- Press and hold the SET key for 2 seconds or more to return to the PV/SV monitor screen.
6. INPUT FUNCTION

6.3 Preventing the Input Flicker

To prevent the input flicker, PV digital filter with the first-order lag calculation is provided.

Description of function

PV digital filter is software designed to reduce variance of PV caused by noise. Effect of input noise can be reduced by setting time constant of PV digital filter based on the controlled object requirement and its level of noise. Setting a value too small leads to a poor result of PV digital filter; just as an input response will be poor when setting a value too large.

Parameter setting

- **PV digital filter**

 [Parameter setting mode] [EX]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dF</td>
<td>0 to 100 seconds (0: Digital filter function OFF)</td>
<td>1</td>
</tr>
</tbody>
</table>

To show the “PV digital filter,” enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.
Setting procedure

PV digital filter can be set in the Parameter setting mode.

To show the PV digital filter, enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.

Procedure to enter the Initial setting mode

1. **Monitor display mode**
 - PV/SV monitor
 - While pressing the SET key, press the REV key for 2 seconds or more
 - Initial setting mode
 - Initial setting code
 - 3 times

2. **Parameter setting mode**
 - Alarm 1 set value
 - Another parameter may be displayed depending on the specification

3. **Set data lock**
 - Press the SET key repeatedly till LCK appears
 - Set “1: Expanded display mode”

4. **Display mode selection**
 - 2 seconds or more
 - PV digital filter
 - Set PV digital filter

5. **Setting End**
 - Next parameter is displayed.
 - Set the “Display mode selection” at Cod 0003 in the Initial setting mode to “0: Standard display mode.”
 - Press and hold the SET key for 2 seconds or more to return to the PV/SV monitor screen.
 - Set the highest digit of Set data lock to “0: Lock.”
6.4 Changing Error Handling at Input Error

PV flashing display at input error, Control output at burnout and Alarm action at input burnout can be set.

Description of function

When the Measured value (PV) exceeds the input range high limit or goes below the input range low limit, action is switched to the one specified in the Selection of control output at input burnout. Alarm functions according to the setting of the Selection of alarm action at input burnout.

Refer to the Measured range table (P. 6-5) for the measured range of each input type.

Example of display range at the time of abnormal input

Input type: thermocouple K, Measured range: –200 to +1372 °C, Input range: 0 to 400 °C

1. Minimum display limit is –1999 or –199.9
2. Maximum display limit is 9999 or 999.9
3. "Flashing display" or "Non-flashing display" of PV can be selected for the "PV flashing display at input error."
4. Selection of "Alarm NOT forced to ON" at input burnout is possible at Selection of Alarm action at input burnout.
Parameter setting

PV flashing display at input error
[Initial setting mode: \texttt{Cod 102 1}]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dSpD</td>
<td>0: Flashing display</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1: Non-flashing display</td>
<td></td>
</tr>
</tbody>
</table>

To show the “PV flashing display at input error,” enter the Expanded display mode by setting the “Display mode selection” at \texttt{Cod 0003} in the Initial setting mode.

Alarm 1 and 2 action at input burnout
[Initial setting mode: \texttt{Cod 104 1}, \texttt{Cod 1042}]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abo1</td>
<td>0: Alarm output is not forcibly turned ON when the burnout function is</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>activated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: ON at over-scale; no action at underscale</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2: ON at underscale; no action at over-scale</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3: ON at over-scale or underscale</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4: OFF at over-scale or underscale</td>
<td></td>
</tr>
</tbody>
</table>

1 “No action” means alarm action is not forced to ON when burnout occurs. For example, if the alarm is ON when burnout occurs, the alarm remains ON.

2 Regardless of the alarm state, alarms are forced to turn off when overrange (going over-scale or underscale) happens.

To show the “Alarm 1 action at input burnout” and “Alarm 2 action at input burnout,” enter the Expanded display mode by setting the “Display mode selection” at \texttt{Cod 0003} in the Initial setting mode.

Control output at burnout
[Initial setting mode: \texttt{Cod 105 1}]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dbo</td>
<td>0: Result of control computation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: PID control: Output limiter low (output OFF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heat/Cool PID control: −5.0 % (output OFF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Both heating and cooling outputs are forced OFF.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PID control:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heat/Cool PID control:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

To show the “Control output at burnout,” enter the Expanded display mode by setting the “Display mode selection” at \texttt{Cod 0003} in the Initial setting mode.
Setting procedure

- PV flashing display at input error can be set at \(\text{Cod} \, 102 \, 1\) in the Initial setting mode.
- Alarm 1 output action at input burnout can be set at \(\text{Cod} \, 104 \, 1\) in the Initial setting mode.
- Alarm 2 output action at input burnout can be set at \(\text{Cod} \, 104 \, 2\) in the Initial setting mode.
- Control output at burnout can be set at \(\text{Cod} \, 105 \, 1\) in the Initial setting mode.

Procedure to enter the Initial setting mode

1. **Monitor display mode**
 - **PV/SV monitor**
 - **Initial setting code**
 - **Cod**
 - **Press the \(\text{SET}\) key**
 - **2 seconds or more**
 - **Press**
 - **R/S**
 - **key for 2 seconds or more**
 - **While pressing the \(\text{SET}\) key, press the **R/S** key for 2 seconds or more**
 - **Another parameter may be displayed depending on the specification**
 - **Press the \(\text{SET}\) key repeatedly until \(\text{LCP}\) appears**
 - **Set “1”**
 - **Initial setting mode display**

2. **Parameter setting mode**
 - **Alarm 1 set value**
 - **Cod**
 - **Press the \(\text{SET}\) key**
 - **3 times**
 - **To set “PV flashing display at input error”**
 - **Alarm 1 set value**
 - **Cod**
 - **Press the \(\text{SET}\) key**
 - **6 times**
 - **To continue setting**
 - **Alarm 1 set value**
 - **Cod**
 - **Press the \(\text{SET}\) key**
 - **4 times**
 - **To end setting**
 - **Alarm 1 set value**
 - **Cod**
 - **Press the \(\text{SET}\) key**
 - **3 times**
 - **To D**
 - **Alarm 1 set value**
 - **Cod**
 - **Press the \(\text{SET}\) key**
 - **2 seconds or more**
 - **While pressing the \(\text{SET}\) key, press the R/S key**
 - **For 2 seconds or more**
 - **Set “1: Expanded display mode”**

3. **Set data lock**
 - **Set data lock**
 - **LCP**
 - **Press the \(\text{SET}\) key**
 - **1000**
 - **To set “Control output at burnout”**
 - **Set data lock**
 - **LCP**
 - **Press the \(\text{SET}\) key**
 - **1000**
 - **To set “Alarm 2 action at input burnout”**
 - **Set data lock**
 - **LCP**
 - **Press the \(\text{SET}\) key**
 - **1000**
 - **To set “Alarm 1 action at input burnout”**
 - **Set data lock**
 - **LCP**
 - **Press the \(\text{SET}\) key**
 - **1000**
 - **To continue setting**

4. **Display mode selection**
 - **Display mode selection**
 - **dSEL**
 - **Press the \(\text{SET}\) key**
 - **0003**
 - **To set “Control output at burnout”**
 - **Display mode selection**
 - **dSEL**
 - **Press the \(\text{SET}\) key**
 - **0000**
 - **To set “PV flashing display at input error”**
 - **Display mode selection**
 - **dSEL**
 - **Press the \(\text{SET}\) key**
 - **0010**
 - **To set “Parameter setting mode”**
 - **Display mode selection**
 - **dSEL**
 - **Press the \(\text{SET}\) key**
 - **0001**
 - **To set “Monitor display mode”**

5. **Initial setting code**
 - **Initial setting code**
 - **Cod**
 - **Press the \(\text{SET}\) key**
 - **0000**
 - **To continue setting**

6. **Setting End**
 - **Setting End**
 - **Press a few times depending on the setting item**
 - **Go to one of following instructions:**
 - **B**
 - **C**
 - **D**

- Next parameter is displayed.
- Set the “Display mode selection” at \(\text{Cod} \, 0003\) in the Initial setting mode to “0: Standard display mode.”
- Press the \(\text{R/S}\) key for 2 seconds or more while pressing the \(\text{SET}\) key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”

Continued on the next page.
- Next parameter is displayed.
- Set the “Display mode selection” at Cod 0003 in the Initial setting mode to “0: Standard display mode.”
- Press the Key for 2 seconds or more while pressing the Key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
This chapter describes output related functions, setting contents and setting procedure based on the key words related to outputs.

7.1 Changing Output Assignment .. 7-2
7.2 Limiting Output ... 7-6
7.3 Changing Proportional Cycle Time .. 7-8
7.4 Changing Alarm Output (Energize/De-energize) 7-12
7.5 Monitoring Manipulated Output Value .. 7-15
7. OUTPUT FUNCTION

7.1 Changing Output Assignment

This instrument has up to three hardware outputs. The following output signals can be assigned to each output.

- Control output
- Alarm output
- Heater break alarm (HBA) output (optional)

Configuration of alarm type, Heater break alarm setup and selection of energized/de-energized will be required to provide alarm and Heater break alarm (HBA) output in addition to the output assignment.

Description of function

Assign outputs [control output, alarm output, Heater break alarm (HBA) output] to the output terminals. When assigning outputs, assign Control output(s) first. Then, assign Alarm output and Heater break alarm (HBA) output. Refer to the following table for available assignments.

Output terminals

![Output terminal diagram]

* Output assignment can be overlapped. Overlapped outputs are produced as *OR* output.

Output assignment [for PID control]

<table>
<thead>
<tr>
<th>Control output</th>
<th>Alarm 1 output</th>
<th>Alarm 2 output</th>
<th>Heater break alarm 1 (HBA1) output</th>
<th>Heater break alarm 2 (HBA2) output</th>
</tr>
</thead>
<tbody>
<tr>
<td>No assignment</td>
<td>Any one of Output 1, 2, and 3 (OUT1, 2, 3) *</td>
<td>Not settable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output 1 (OUT1)</td>
<td>Output 2 (OUT2) or Output 3 (OUT3) *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output 2 (OUT2)</td>
<td>Output 1 (OUT1) or Output 3 (OUT3) *</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output assignment [for Heat/Cool PID control]

<table>
<thead>
<tr>
<th>Control output</th>
<th>Alarm 1 output</th>
<th>Alarm 2 output</th>
<th>Heater break alarm 1 (HBA1) output</th>
<th>Heater break alarm 2 (HBA2) output</th>
</tr>
</thead>
<tbody>
<tr>
<td>No assignment</td>
<td>No assignment</td>
<td>Any one of Output 1, 2, and 3 (OUT1, 2, 3) 1</td>
<td>Not settable</td>
<td></td>
</tr>
<tr>
<td>Output 1 (OUT1)</td>
<td>Output 2 (OUT2)</td>
<td>Output 3 (OUT3) 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output 2 (OUT2)</td>
<td>Output 1 (OUT1)</td>
<td>Output 3 (OUT3) 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output 1 (OUT1)</td>
<td>Output 3 (OUT3) 2</td>
<td>Output 2 (OUT2) 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output 2 (OUT2)</td>
<td>Output 3 (OUT3) 2</td>
<td>Output 1 (OUT1) 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Output assignment can be overlapped. Overlapped outputs are produced as *OR* output.

2 When Output 3 (OUT3) is used on the RZ400 as a cool-side output, the operating life of the relay is shorter than that of Output 1 (OUT1) and Output 2 (OUT2). (Refer to the Specification of relay contact output on the next page.)
Specification of relay contact varies with the assigned output (relay type).

<table>
<thead>
<tr>
<th>Type</th>
<th>Output terminal</th>
<th>Output type</th>
<th>Specification of relay contact output</th>
</tr>
</thead>
<tbody>
<tr>
<td>RZ100</td>
<td>Output 1 (OUT1)</td>
<td>Control output</td>
<td>Contact type: 1a contact</td>
</tr>
<tr>
<td></td>
<td>Output 2 (OUT2)</td>
<td></td>
<td>Contact rating (Resistive load): 250 V AC, 3 A, 30 V DC 1 A</td>
</tr>
<tr>
<td></td>
<td>Output 3 (OUT3)</td>
<td></td>
<td>Electrical life: 100,000 times or more (Rated load)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mechanical life: 20 million times or more (Switching: 300 times/min)</td>
</tr>
<tr>
<td>RZ400</td>
<td>Output 3 (OUT3)</td>
<td>Control output</td>
<td>Contact type: 1a contact</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contact rating (Resistive load): 250 V AC, 3 A, 30 V DC 1 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Electrical life: 300,000 times or more (Rated load)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mechanical life: 50 million times or more (Switching: 180 times/min)</td>
</tr>
<tr>
<td>RZ100</td>
<td>Output 1 (OUT1)</td>
<td>Alarm output (including Heater break alarm output)</td>
<td>Contact type: 1a contact</td>
</tr>
<tr>
<td></td>
<td>Output 2 (OUT2)</td>
<td></td>
<td>Contact rating (Resistive load): 250 V AC, 1 A, 30 V DC 0.5 A</td>
</tr>
<tr>
<td></td>
<td>Output 3 (OUT3)</td>
<td></td>
<td>Electrical life: 150,000 times or more (Rated load)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mechanical life: 20 million times or more (Switching: 300 times/min)</td>
</tr>
<tr>
<td>RZ400</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If Output 1 or 2 (OUT1 or 2) is voltage pulse output or current output, assigning Alarm output or Heater break alarm (HBA) output will be ignored.

Parameter setting

Control output assignment

[Initial setting mode: \texttt{Cod 0002}]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>o o o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0: No assignment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1: PID control:</td>
<td>Output 1 (OUT1)</td>
<td>When Control output assignment is specified at the time of ordering, the ordered output assignment is the factory setting.</td>
</tr>
<tr>
<td></td>
<td>Heat/Cool PID control: Heat-side output: Output 1 (OUT1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cool-side output: Output 2 (OUT2)</td>
<td></td>
</tr>
<tr>
<td>2: PID control:</td>
<td>Output 2 (OUT2)</td>
<td>If Control output assignment is not specified, factory setting depends on the specification (with or without outputs). For details, refer to 1.3 Model Code (P. 1-4).</td>
</tr>
<tr>
<td></td>
<td>Heat/Cool PID control: Heat-side output: Output 2 (OUT2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cool-side output: Output 1 (OUT1)</td>
<td></td>
</tr>
<tr>
<td>3: Heat-side output: Output 1 (OUT1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cool-side output: Output 3 (OUT3) *</td>
<td></td>
</tr>
<tr>
<td>4: Heat-side output: Output 2 (OUT2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cool-side output: Output 3 (OUT3) *</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data range for PID control: 0 to 2

* When Output 3 (OUT3) is used on the RZ400 as a cool-side output, the operating life of the relay is shorter than that of Output 1 (OUT1) and Output 2 (OUT2). (Refer to the Specification of relay contact output shown above.)

When Control output assignment is set to “No assignment,” then Heater break alarm (HBA) function is disabled.
Output assignment of Alarm 1, 2
[Initial setting mode: \textit{Cod 0002}]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
</table>
| \textit{OAL1} | 0: No assignment
| | 1: Output 1 (OUT1)
| | 2: Output 2 (OUT2)
| | 3: Output 3 (OUT3) | When Alarm output assignment is specified at the time of ordering, the ordered output assignment is the factory setting.
| | | If Alarm output assignment is not specified, factory setting depends on the specification (with or without outputs).
| | | For details, refer to \textit{1.3 Model Code (P. 1-4)}. |

To show the “Output assignment of Alarm 1,” set a value other than “None” at \textit{Cod 0000} (Alarm 1 type) in the Initial setting mode.

To show the “Output assignment of Alarm 2,” set a value other than “None” at \textit{Cod 0000} (Alarm 2 type) in the Initial setting mode.

If Output 1 or 2 (OUT1 or 2) is voltage pulse output or current output, assignment of Alarm output is ignored.

To provide alarm output, both alarm output assignment and alarm type selection are required. Implement setting of Energized/De-energized according to the necessity. For the alarm type, refer to \textit{10.1.2 Changing alarm type (P. 10-8)}. For the Energized/De-energized, refer to \textit{7.4 Changing Alarm Output (Energize/De-energize) (P. 7-12)}.

Refer to the list of \textit{Output assignment (P. 7-2)} for assignable alarm output.

Output assignment of Heater break alarm 1, 2
[Initial setting mode: \textit{Cod 0002}]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
</table>
| \textit{OHb1} | 0: No assignment
| | 1: Output 1 (OUT1)
| | 2: Output 2 (OUT2)
| | 3: Output 3 (OUT3) | When Heater break alarm output assignment is specified at the time of ordering, the ordered output assignment is the factory setting.
| | | If Heater break alarm output assignment is not specified: 0

To show the “Output assignment of Heater break alarm 1” and “Output assignment of Heater break alarm 2,” specify “with current transformer (CT),” which is an optional function. You also need to set a value other than “0.0” for “Heater break alarm 1 (HBA1) set value” and “Heater break alarm 2 (HBA2) set value.”

If Output 1 or 2 (OUT1 or 2) is voltage pulse output or current output, assignment of Heater break alarm (HBA) output is ignored.

To provide Heater break alarm, both of Heater break alarm output assignment and setup of the Heater break alarm function will be required. Implement setting of Energized/De-energized according to the necessity. For setting up a Heater break alarm, refer to \textit{10.3.2 Setting the Heater break alarm (HBA) set value (P. 10-38)}. For the Energized/De-energized, refer to \textit{7.4 Changing Alarm Output (Energize/De-energize) (P. 7-12)}.

Refer to the list of \textit{Output assignment (P. 7-2)} for assignable Heater break alarm (HBA) output.
7. OUTPUT FUNCTION

- Setting procedure

Control output assignment, Output assignment of Alarm and Output assignment of Heater break alarm can be set at Cod 0002 in the Initial setting mode.

Procedure to enter the Initial setting mode

- Set Control output assignment
- Set Output assignment of Alarm 1
- Set Output assignment of Alarm 2
- Set Output assignment of Heater break alarm 1
- Set Output assignment of Heater break alarm 2

- Next parameter is displayed.
- Press the key for 2 seconds or more while pressing the key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
7. OUTPUT FUNCTION

7.2 Limiting Output

Use output limiter to limit the output.

Description of function

This is the function which restricts the high and low limits of Manipulated output values (MV).

The manipulated output value is not produced within this range.

- Output limiter high [Heat-side output limiter (high)]

 [Parameter setting mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AoLH</td>
<td>PID control:</td>
<td>105.0</td>
</tr>
<tr>
<td></td>
<td>Output limiter low to 105.0 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Output limiter high > Output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>limiter low)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heat/Cool PID control:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0 to 105.0 %</td>
<td></td>
</tr>
</tbody>
</table>

To show the “Output limiter high [Heat-side output limiter (high)]”, enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.

- Output limiter low [Cool-side output limiter (high)]

 [Parameter setting mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AoLL</td>
<td>PID control:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>–5.0 % to Output limiter high</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Output limiter high > Output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>limiter low)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heat/Cool PID control:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0 to 105.0 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For Heat/Cool PID control, this is a Cool-side output limiter (high).</td>
<td></td>
</tr>
</tbody>
</table>

To show the “Output limiter low [Cool-side output limiter (high)]”, enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.
 Setting procedure

Output limiter high/low can be set in the Parameter setting mode.
To show the “Output limiter high/low,” enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.

Procedure to enter the Initial setting mode

- Next parameter is displayed.
- Press the key for 2 seconds or more while pressing the key to go to the Initial setting mode.
- Set the “Display mode selection” at Cod 0003 in the Initial setting mode to “0: Standard display mode.”
- Press the key for 2 seconds or more while pressing the key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
7.3 Changing Proportional Cycle Time

When time proportioning output (relay output or voltage pulse output) is specified at the time of ordering, proportional cycle and Minimum ON/OFF time can be changed.

Description of function

- **Proportional cycle time**
 Manipulated output value turns ON and OFF in a certain cycle (Proportional cycle time) when the Measured value (PV) reaches within the Proportional band at Time proportioning action. More precise control can be achieved by shortening Proportional cycle time, however, the life of operating unit (Relay etc.) can be shortened based on the feature of the specific controlled object.

- **Minimum ON/OFF time of proportioning cycle**
 Minimum ON/OFF time of proportioning cycle can be used to compensate relay life by acquiring the minimum OF/OFF time.

Minimum ON time of proportioning cycle:
Manipulated output does not turn ON when the duration of the computed ON output is shorter than the Minimum ON time of proportioning cycle being set.
Manipulated output remains ON the same amount of time as the computed ON output when the computed ON output is longer than the Minimum ON time of proportioning cycle being set.
(Minimum ON time of proportioning cycle is valid when the computed ON output exceeds 0 %.)

Minimum OFF time of proportioning cycle:
Manipulated output remains OFF the same amount of time as the Minimum OFF time set when the computed OFF output is shorter than the Minimum OFF time being set.
Manipulated output remains OFF the same amount of time as the computed OFF output when the computed OFF output is longer than the Minimum OFF time being set.
(Minimum OFF time of proportioning cycle is valid when the computed OFF output is below 100 %.)

When the computed ON output exceeds 0 %

When the computed OFF output is below 100 %

* When a long minimum ON/OFF time is required for the relay, set a time longer than that time.

Minimum ON/OFF time of proportioning cycle is not operative if the Proportioning cycle is set shorter than the Minimum ON/OFF time of proportioning cycle (Proportioning cycle < Minimum ON/OFF proportioning time).
Parameter setting

- **Proportional cycle time [heat-side]**
 [Parameter setting mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>1 to 100 seconds</td>
<td>Relay contact output: 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voltage pulse output: 2</td>
</tr>
</tbody>
</table>

To show the “Proportional cycle time [heat-side],” specify time proportioning output (relay contact output or voltage pulse output) on the heat-side control output.

- **Proportional cycle time [cool-side]**
 [Parameter setting mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>1 to 100 seconds</td>
<td>For “Cooling linear type” configured</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to have “Voltage pulse output”: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Otherwise: 20</td>
</tr>
</tbody>
</table>

To show the “Proportional cycle time [cool-side],” specify time proportioning output (relay contact output or voltage pulse output) on the cool-side control output.

To show the “Proportional cycle time [cool-side],” specify “Heat/Cool PID control” at the time of ordering or configure the instrument to “Heat/Cool PID control” at $\text{Code} \ 1051$ in the Initial setting mode to “Control action.”

For the selection of Control action, refer to **11.2 Changing Control Action (P. 11-4)**.

- **Minimum ON/OFF time of proportioning cycle [heat-side]**
 [Parameter setting mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{T}</td>
<td>0 to 1000 ms</td>
<td>0</td>
</tr>
</tbody>
</table>

To show the “Minimum ON/OFF time of proportioning cycle [heat-side],” specify time proportioning output (relay contact output or voltage pulse output) on the heat-side control output.

To show the “Minimum ON/OFF time of proportioning cycle [heat-side],” enter the Expanded display mode by setting the “Display mode selection” at $\text{Code} \ 0003$ in the Initial setting mode.
● Minimum ON/OFF time of proportioning cycle [cool-side]
[Parameter setting mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>0 to 1000 ms</td>
<td>0</td>
</tr>
</tbody>
</table>

To show the “Minimum ON/OFF time of proportioning cycle [cool-side],” specify time proportioning output (relay contact output or voltage pulse output) on the cool-side control output.

To show the “Minimum ON/OFF time of proportioning cycle [cool-side],” specify “Heat/Cool PID control” at the time of ordering or configure the instrument to “Heat/Cool PID control” at \(\text{Cod} \ 1051 \) in the Initial setting mode to “Control action.”

To show the “Minimum ON/OFF time of proportioning cycle [cool-side],” enter the Expanded display mode by setting the “Display mode selection” at \(\text{Cod} \ 0003 \) in the Initial setting mode.

For the selection of Control action, refer to 11.2 Changing Control Action (P. 11-4).

Parameter setting

Proportional cycle time

Proportional cycle time can be set in the Parameter setting mode.

![Diagram of Parameter setting process]

- Next parameter is displayed.
- Press and hold the \(\text{SET} \) key for 2 seconds or more to return to the PV/SV monitor screen.
7. OUTPUT FUNCTION

- **Minimum ON/OFF time of proportioning cycle**

Minimum ON/OFF time of proportioning cycle can be set in the Parameter setting mode. To show the “Minimum ON/OFF time of proportioning cycle,” enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.

Procedure to enter the Initial setting mode

1. **Monitor display mode**
 - PV/SV monitor

2. **Parameter setting mode**
 - Alarm 1 set value

3. **Set data lock**
 - Press the SET key for 2 seconds or more

4. **Display mode selection**
 - Set “1: Expanded display mode”

5. **Initial setting mode**
 - Cod 0000

6. **Parameter setting mode**
 - Minimum ON/OFF time of proportioning cycle [heat-side]

7. **Set data lock**
 - Press the SET key for 2 seconds or more

8. **Display mode selection**
 - Set “1: Expanded display mode”

9. **Initial setting mode**
 - Cod 0003

10. **Parameter setting mode**
 - Minimum ON/OFF time of proportioning cycle [cool-side]

Setting End

- Next parameter is displayed.
- Press the R/S key for 2 seconds or more while pressing the SET key to go to the Initial setting mode.
- Set the “Display mode selection” at Cod 0003 in the Initial setting mode to “0: Standard display mode.”
- Press the R/S key for 2 seconds or more while pressing the SET key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
7.4 Changing Alarm Output (Energize/De-energize)

Energize or De-energize can be selected for Alarm outputs and Heater break alarm (HBA) outputs (optional).

Energize or De-energize can be set on the output terminals (OUT1 to OUT3) which were configured at Cod 0002 in the Initial setting mode for “Output assignment of Alarm 1 and 2” and “Output assignment of Heater break alarm 1 and 2.” Setting this function on the output terminals to which control output is assigned is ignored.

Description of function

Explanation of Energize/De-energize action

<table>
<thead>
<tr>
<th>Setting Energize/De-energize</th>
<th>Output state of alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-alarm state</td>
</tr>
<tr>
<td>When set to Energize</td>
<td>Alarm output OFF</td>
</tr>
<tr>
<td>When set to De-energize</td>
<td>Alarm output ON</td>
</tr>
</tbody>
</table>

Example: For relay contact output

- **Energize:** Relay contact is closed in alarm condition.
- **De-energize:** Relay contact is open in alarm condition.

Parameter setting

- **Output 1 (OUT1) energize/de-energize when assigned to alarm**

 [Initial setting mode: Cod 0002]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUC1</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

 0: Energize
 1: De-energize (Contact CLOSE or OPEN, at STOP) *
 2: De-energize (Contact OPEN, at STOP)
 * If the controller is not in the alarm state at STOP, contact CLOSE.
 If the controller is in the alarm state at STOP, contact OPEN.

To show the “Output 1 (OUT1) energize/de-energize when assigned to alarm,” set a value other than “None” at Cod 0000 in the Initial setting mode for “Alarm 1 type” or “Alarm 2 type.” Alternatively “with current transformer (CT)” needs to be specified as an option at the time of ordering. You also need to set a value other than “0.0” for “Heater break alarm 1 (HBA1) set value” or “Heater break alarm 2 (HBA2) set value” in the Parameter setting mode.

To show the “Output 1 (OUT1) energize/de-energize when assigned to alarm,” enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.

If the output terminal set at Cod 0002 in the Initial setting mode for “Output assignment of Alarm 1 and 2” and “Output assignment of Heater break alarm 1 and 2” is not Output 1 (OUT1), the setting is ignored.

For output assignment of Alarm and Heater break alarm, refer to 7.1 Changing Output Assignment (P. 7-2).
● Output 2 (OUT2) energize/de-energize when assigned to alarm
[Initial setting mode: Cod 0002]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYC2</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0: Energize</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1: De-energize</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Contact CLOSE or OPEN, at STOP) *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2: De-energize</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Contact OPEN, at STOP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* If the controller is not in the alarm state at STOP, contact CLOSE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If the controller is in the alarm state at STOP, contact OPEN.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To show the “Output 2 (OUT2) energize/de-energize when assigned to alarm,” set a value other than “None” at Cod 0000 in the Initial setting mode for “Alarm 1 type” or “Alarm 2 type.” Alternatively “with current transformer (CT)” needs to be specified as an option at the time of ordering. You also need to set a value other than “0.0” for “Heater break alarm 1 (HBA1) set value” or “Heater break alarm 2 (HBA2) set value” in the Parameter setting mode.

To show the “Output 2 (OUT2) energize/de-energize when assigned to alarm,” enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.

If the output terminal set at Cod 0002 in the Initial setting mode for “Output assignment of Alarm 1 and 2” and “Output assignment of Heater break alarm 1 and 2” is not Output 2 (OUT2), the setting is ignored.

For output assignment of Alarm and Heater break alarm, refer to 7.1 Changing Output Assignment (P. 7-2).

● Output 3 (OUT3) energize/de-energize when assigned to alarm
[Initial setting mode: Cod 0002]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYC3</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0: Energize</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1: De-energize</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Contact CLOSE or OPEN, at STOP) *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2: De-energize</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Contact OPEN, at STOP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* If the controller is not in the alarm state at STOP, contact CLOSE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If the controller is in the alarm state at STOP, contact OPEN.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To show the “Output 3 (OUT3) energize/de-energize when assigned to alarm,” set a value other than “None” at Cod 0000 in the Initial setting mode for “Alarm 1 type” or “Alarm 2 type.” Alternatively “with current transformer (CT)” needs to be specified as an option at the time of ordering. You also need to set a value other than “0.0” for “Heater break alarm 1 (HBA1) set value” or “Heater break alarm 2 (HBA2) set value” in the Parameter setting mode.

To show the “Output 3 (OUT3) energize/de-energize when assigned to alarm,” enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.

If the output terminal set at Cod 0002 in the Initial setting mode for “Output assignment of Alarm 1 and 2” and “Output assignment of Heater break alarm 1 and 2” is not Output 3 (OUT3), the setting is ignored.

For output assignment of Alarm and Heater break alarm, refer to 7.1 Changing Output Assignment (P. 7-2).
Setting procedure

Output energize/de-energize when assigned to alarm can be set at Code 0002 in the Initial setting mode.

Procedure to enter the Initial setting mode

1. **Monitor display mode**
 - PV/SV monitor
2. **Parameter setting mode**
 - Alarm 1 set value
3. **Set data lock**
 - Press the SET key for 2 seconds or more while pressing the SET key.

Initial setting mode

1. **Initial setting code**
 - Cod 0000

2. **Display mode selection**
 - dSEL 0001
 - Set “1: Expanded display mode.”

3. **Output 1 (OUT1)**
 - EYC 1 0000
 - Set Output 1 (OUT1) energize/de-energize when assigned to alarm

4. **Output 2 (OUT2)**
 - EYC 2 0000
 - Set Output 2 (OUT2) energize/de-energize when assigned to alarm

5. **Output 3 (OUT3)**
 - EYC 3 0000
 - Set Output 3 (OUT3) energize/de-energize when assigned to alarm

Setting End

- Next parameter is displayed.
- Set the “Display mode selection” at Code 0003 in the Initial setting mode to “0: Standard display mode.”
- Press the key for 2 seconds or more while pressing the key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
7.5 Monitoring Manipulated Output Value

Manipulated output value can be monitored on this instrument.

- **Display contents**
 - **Manipulated output value [heat-side]**
 - [Monitor display mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMV</td>
<td>PID control: Output limiter low to Output limiter high</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heat/Cool PID control: -5.0 % to Heat-side output limiter (high)</td>
<td></td>
</tr>
</tbody>
</table>

To show the “Manipulated output value [heat-side],” enter the Expanded display mode by setting the “Display mode selection” at $Cod 0003$ in the Initial setting mode.

- **Manipulated output value [cool-side]**
 - [Monitor display mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$AMVc$</td>
<td>-5.0 % to Cool-side output limiter (high)</td>
<td></td>
</tr>
</tbody>
</table>

To show the “Manipulated output value [cool-side],” specify “Heat/Cool PID control” at the time of ordering or configure the instrument to “Heat/Cool PID control” at $Cod 1051$ in the Initial setting mode to “Control action.”

To show the “Manipulated output value [cool-side],” enter the Expanded display mode by setting the “Display mode selection” at $Cod 0003$ in the Initial setting mode.

For the selection of Control action, refer to **11.2 Changing Control Action (P. 11-4)**.
Display operation

Manipulated output value can be found in the Monitor display mode.
To show the “Manipulated output value,” enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.

Procedure to enter the Initial setting mode

1. **Monitor display mode**
 - PV/SV monitor
 - Set the key, press the key for 2 seconds or more

2. **Parameter setting mode**
 - Alarm 1 set value
 - While pressing the key, press the key for 2 seconds or more

3. **Set data lock**
 - Press the key repeatedly till LCU appears
 - Set “1”
 - Initial setting mode display

4. **Display mode selection**
 - Cod 0003
 - dSEL 0001
 - Set “1: Expanded display mode”

Display operation

- Next parameter is displayed.
- Press the key for 2 seconds or more while pressing the key to go to the Initial setting mode.
- Set the “Display mode selection” at Cod 0003 in the Initial setting mode to “0: Standard display mode.”
- Press the key for 2 seconds or more while pressing the key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
This chapter describes display related functions, setting contents and setting procedure based on the keywords related to setting and key operation.

8.1 Limiting the Setting Range of Set Value (SV) 8-2
8.2 Continuing the Control when Entering the Initial Setting Mode 8-5
8.3 Restricting Key Operation ... 8-7
8.1 Limiting the Setting Range of Set Value (SV)

To limit the setting range of the Set value (SV), Setting limiter is used.

Description of function

Setting limiter is a function to limit the setting range of the Set value (SV) within the input range.

Example: The input range is from -200 °C to $+1372$ °C, the Setting limiter high is 400 °C, and the Setting limiter low is 0 °C.

Parameter setting

- **Setting limiter high**

 [Initial setting mode: Cod 1021]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLH</td>
<td>Setting limiter low to Input range high</td>
<td>Input range high</td>
</tr>
<tr>
<td></td>
<td>Varies with the setting of the Decimal point position.</td>
<td></td>
</tr>
</tbody>
</table>

 - To show the “Setting limiter high,” enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.

- **Setting limiter low**

 [Initial setting mode: Cod 1021]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLL</td>
<td>Input range low to Setting limiter high</td>
<td>Input range low</td>
</tr>
<tr>
<td></td>
<td>Varies with the setting of the Decimal point position.</td>
<td></td>
</tr>
</tbody>
</table>

 - To show the “Setting limiter low,” enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.
Setting limiter high is initialized to the input range high value when the input range is changed. Similarly when setting limiter low is changed, it is initialized to the value of Input range low.

[Example]

Assuming that the setting limiter high is set to 200 °C and the setting limiter low is set to 50 °C on the instrument with a range of 0 to 400 °C, changing the input range high to 300 °C will initialize the setting limiter high to the value same as the input range high (300 °C).
Setting procedure

Setting limiter high/low can be set at Cod 1021 in the Initial setting mode.

Procedure to enter the Initial setting mode

- Next parameter is displayed.
- Set the “Display mode selection” at Cod 0003 in the Initial setting mode to “0: Standard display mode.”
- Press the key for 2 seconds or more while pressing the key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
8.2 Continuing the Control when Entering the Initial Setting Mode

With the factory setting, the instrument is configured to automatically stop the control (STOP) when the instrument is switched to the Initial setting mode. With another setting, the instrument can continue the control (RUN) even if the instrument is switched to the Initial setting mode.

Description of function

With the use of “STOP function at Initial setting mode” (at Code 1030 in the Initial setting mode) the instrument can continue the control (RUN) even if the mode is switched to the Initial setting mode. This feature may be useful to view parameters in the Initial setting mode without stopping the control.

It should be noted, however, that the parameters in the Initial setting mode cannot be changed during the control (RUN) state. To change the parameters in the Initial setting mode, the control must be stopped (STOP).

Control state at the time of mode switching

<table>
<thead>
<tr>
<th>Setting contents of “STOP function at Initial setting mode”</th>
<th>Control state of Monitor display mode/ SV setting mode/ Parameter setting mode</th>
<th>Mode switching</th>
<th>Control state of Initial setting mode</th>
<th>Mode switching</th>
<th>Control state of Monitor display mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: STOP</td>
<td>RUN → STOP</td>
<td>STOP → RUN</td>
<td>RUN</td>
<td>STOP</td>
<td>RUN</td>
</tr>
<tr>
<td>1: RUN/STOP continue</td>
<td>RUN → STOP</td>
<td>RUN → RUN</td>
<td>RUN</td>
<td>STOP</td>
<td>RUN</td>
</tr>
</tbody>
</table>

Procedures to change parameters for the Initial setting mode when “RUN/STOP continue” is selected

It is assumed here that the control state is RUN before the change in the Initial setting mode.

1. Press and hold the key for 1 second to STOP the control.

2. Press the key for 2 seconds or more while pressing the key to enter the Initial setting mode. (Control state is STOP)

3. Change set value(s) of desired parameter(s).

4. Press the key for 2 seconds or more while pressing the key to return the PV/SV monitor screen (Monitor display mode).

5. Press and hold the key for 1 second to RUN the control.
8. SETTING AND KEY OPERATION

Parameter setting

- STOP function at Initial setting mode
 [Initial setting mode: \textit{Cod 1030}]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{InS}</td>
<td>0: STOP in the Initial setting mode 1: RUN/STOP continues in the Initial setting mode</td>
<td>0</td>
</tr>
</tbody>
</table>

To show the “STOP function at Initial setting mode,” enter the Expanded display mode by setting the “Display mode selection” at \textit{Cod 0003} in the Initial setting mode.

Setting procedure

STOP function at Initial setting mode can be set at \textit{Cod 1030} in the Initial setting mode.

Procedure to enter the Initial setting mode

- Press the SET key repeatedly till LCK appears.
- While pressing the SET key, press the M key for 2 seconds or more.
- Press the SET key repeatedly till LCK appears.
- Set “1” Initial setting mode display.
- Set data lock.
- Set “1: Expanded display mode”.
- Display mode selection.
- Next parameter is displayed.
- Set the “Display mode selection” at \textit{Cod 0003} in the Initial setting mode to “0: Standard display mode.”
- Press the key for 2 seconds or more while pressing the key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
8.3 Restricting Key Operation

The set data lock function limits access of unauthorized personnel to the parameters and prevents parameter change by mistake.

Description of function

The Set data lock function uses the lower three digits of the set value to restrict the setting in the SV setting mode, the Parameter setting mode, and the Communication setting mode. The highest digit is used to show/hide the Initial setting mode.

<table>
<thead>
<tr>
<th>Set value</th>
<th>Description of Set Lock</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>All parameters</td>
</tr>
<tr>
<td>001</td>
<td>Parameters in the Parameter setting mode and the Communication setting mode excluding the Set value (SV) and Alarm set values (ALM1, ALM2) *</td>
</tr>
<tr>
<td>010</td>
<td>All parameters except for Alarm 1 set value (ALM1) and Alarm 2 set value (ALM2) *</td>
</tr>
<tr>
<td>011</td>
<td>Parameters in the Parameter setting mode and the Communication setting mode excluding the Set value (SV)</td>
</tr>
<tr>
<td>100</td>
<td>All parameters except for Set value (SV)</td>
</tr>
<tr>
<td>101</td>
<td>Parameters in the Parameter setting mode and the Communication setting mode excluding Alarm set values (ALM1, ALM2) *</td>
</tr>
<tr>
<td>110</td>
<td>All parameters except for Set value (SV), Alarm 1 set value (ALM1) and Alarm 2 set value (ALM2) *</td>
</tr>
<tr>
<td>111</td>
<td>No parameter (All Locked)</td>
</tr>
</tbody>
</table>

* Values for Control loop break alarm (LBA) time and LBA deadband (LBD) are not included.

- The following parameters cannot be locked:
 - Interlock release (SV setting mode)
 - Set data lock (Parameter setting mode)

- As the parameters can be viewed even in the lock state, the set data can be verified. However, when the Set value (SV) is locked, the SV screen in the SV setting mode will not be displayed. (Refer to P. 8-8)
- Setting through the Communication (optional) is possible even when setting is locked. However, to change parameters in the Initial setting mode, the controller must be set to STOP mode.
The display status of the Set value (SV) depends on the following items:
- Lock/Unlock of the Set value (SV),
- Show SV/Hide SV” setting at Cod 1021 in the Initial setting mode,
- Selection of STOP display at Cod 1030 in the Initial setting, and
- RUN/STOP status.

Refer to the following table for details.

The table below shows PV and SV under the following conditions.
- Measured value (PV): 220 °C
- Set value (SV): 200 °C
- Alarm interlock: Use

<table>
<thead>
<tr>
<th>STOP display selection</th>
<th>STOP is displayed on the SV display</th>
<th>STOP is displayed on the PV display</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Show SV</td>
<td>Hide SV</td>
</tr>
<tr>
<td>RUN/STOP status</td>
<td>RUN</td>
<td>STOP</td>
</tr>
<tr>
<td>Monitor display mode</td>
<td>220</td>
<td>220</td>
</tr>
<tr>
<td>SV adjustment mode *</td>
<td>220</td>
<td>220</td>
</tr>
<tr>
<td>Monitor display mode</td>
<td>220</td>
<td>220</td>
</tr>
<tr>
<td>SV locked mode *</td>
<td>220</td>
<td>220</td>
</tr>
</tbody>
</table>

* Display when the SET key is pressed once in the Monitor display mode.

A: As the Set value (SV) is locked, a screen after the Set value (Interlock release) is displayed.
B: As the Set value (SV) cannot be verified in the Monitor display mode, only the Set value (SV) can be viewed in the SV setting mode.
Parameter setting

Set data lock

[Parameter setting mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLCK</td>
<td>0 or 1 is settable at each digit. SV display unit</td>
<td>0000</td>
</tr>
<tr>
<td></td>
<td>Parameters in the Parameter setting mode and the Communication setting mode excluding the Set value (SV) and Alarm set values (ALM1, ALM2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0: Unlock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: Lock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alarm set value (ALM1, ALM2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0: Unlock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: Lock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Set value (SV)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0: Unlock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: Lock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Initial setting mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0: Lock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: Unlock</td>
<td></td>
</tr>
</tbody>
</table>

Setting procedure

Set data lock can be set in the Parameter setting mode.

- **Monitor display mode**
 - PV/SV monitor

- **Parameter setting mode**
 - Alarm 1 set value

- **Set data lock**
 - Press the SET key repeatedly till DLCK appears

- **Set the Set data lock**
 - Another parameter may be displayed depending on the specification
 - Next parameter is displayed.

- **Press and hold the SET key for 2 seconds or more to return to the PV/SV monitor screen.**

IMR02Y05-E2 8-9
This chapter describes display related functions, setting contents and setting procedure based on the key words related to Display.

9.1 Releasing the Display Restriction of the Parameters 9-2
9.2 Changing the Display Position of STOP during the Control Stop..... 9-4
9.3 Hiding the Display of the Set Value (SV) ... 9-6
9. DISPLAY FUNCTION

9.1 Releasing the Display Restriction of the Parameters

This instrument has two display modes; “Standard display mode” and “Expanded display mode.” The instrument is shipped from the factory with the factory setting of “Standard display mode.” Switch the mode to “Expanded display mode” according to the necessity.

- Description of function

Below is the display structure of parameters. The display mode can be switched at **Cod 0003** “Display mode selection” in the Initial setting mode.

Monitor display mode
- PV/SV monitor
- Comprehensive alarm state
- Current transformer 1 (CT1) input value monitor
- Current transformer 2 (CT2) input value monitor
- Manipulated output value [heat-side]
- Manipulated output value [cool-side]

SV setting mode
- Set value (SV)
- Interlock release

Communication setting mode
- Communication protocol
- Device address
- Communication speed
- Data bit configuration
- Interval time
- Communication response monitor

Parameter setting mode
- Alarm 1 set value (ALM1) [high]
- Alarm 1 set value (ALM1) [low]
- Alarm 2 set value (ALM2) [high]
- Alarm 2 set value (ALM2) [low]
- Heater break alarm 1 (HBA1) set value
- Heater break alarm 2 (HBA2) set value
- Control loop break alarm (LBA) time
- LBA deadband (LBD)
- Autotuning (AT)
- Startup tuning (ST)
- Proportional band [heat-side]
- Integral time
- Derivative time
- Anti-reset windup (ARW)
- Proportional cycle time [heat-side]
- Proportional cycle time [cool-side]
- Overlap/Deadband
- Proportional cycle time [cool-side]
- PV bias
- PV digital filter
- Fine tuning
- Minimum ON/OFF time of proportioning cycle [heat-side]
- Minimum ON/OFF time of proportioning cycle [cool-side]
- Output limiter high [heat-side]
- Output limiter low [heat-side]
- Output limiter high [cool-side]
- Output limiter low [cool-side]

Initial setting mode
- Set data lock
- Input type
- Decimal point position
- Input range high
- Input range low
- Alarm 1 type
- Alarm 2 type
- Peak hold monitor of ambient temperature
- Integrated operating time (upper-digits)
- Integrated operating time (lower-digits)
- ROM version
- Model code monitor
- Instrument serial number monitor

SV setting mode
- Set value (SV)
- Interlock release

Communication setting mode
- Communication protocol
- Device address
- Communication speed
- Data bit configuration
- Interval time
- Communication response monitor

Parameter setting mode
- Alarm 1 set value (ALM1) [high]
- Alarm 1 set value (ALM1) [low]
- Alarm 2 set value (ALM2) [high]
- Alarm 2 set value (ALM2) [low]
- Heater break alarm 1 (HBA1) set value
- Heater break alarm 2 (HBA2) set value
- Control loop break alarm (LBA) time
- LBA deadband (LBD)
- Autotuning (AT)
- Startup tuning (ST)
- Proportional band [heat-side]
- Integral time
- Derivative time
- Anti-reset windup (ARW)
- Proportional cycle time [heat-side]
- Proportional cycle time [cool-side]
- Overlap/Deadband
- Proportional cycle time [cool-side]
- PV bias
- PV digital filter
- Fine tuning
- Minimum ON/OFF time of proportioning cycle [heat-side]
- Minimum ON/OFF time of proportioning cycle [cool-side]
- Output limiter high [heat-side]
- Output limiter low [heat-side]
- Output limiter high [cool-side]
- Output limiter low [cool-side]

Control output assignment
- Output assignment of Alarm 1
- Output assignment of Alarm 2
- Output assignment of Heater break alarm 1
- Output assignment of Heater break alarm 2
- Output assignment of Alarm 1 energize/de-energize when assigned to alarm
- Output assignment of Alarm 2 energize/de-energize when assigned to alarm
- Output assignment of Alarm 1 timer
- Output assignment of Alarm 1 interlock
- Output assignment of Alarm 2 differential gap
- Output assignment of Alarm 2 action at input burnout
- Output assignment of Alarm 2 timer
- Output assignment of Alarm 2 interlock

Switch the display mode here.

- Displayed
- Displayed in Expanded display mode (Hidden in Standard display mode)
- Displayed only when relevant option is supplied
- Displayed if display condition is satisfied
Parameter setting

- **Display mode selection**

 [Initial setting mode: \(\text{Cod} \ 0003 \)]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(dSEL)</td>
<td>0: Standard display mode</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1: Expanded display mode</td>
<td></td>
</tr>
</tbody>
</table>

Setting procedure

Display mode selection can be set at \(\text{Cod} \ 0003 \) in the Initial setting mode.

Procedure to enter the Initial setting mode

1. **Monitor display mode**
 - PV/SV monitor
 - **Set data lock** (not shown in the diagram)

2. **Parameter setting mode**
 - **Alarm 1 set value**

3. **Set data lock**
 - **LCK** appears
 - **Set \(1 \)**

4. **Initial setting mode**
 - Initial setting code

5. **Display mode selection**
 - **Set Display mode selection**

Setting End

- Next parameter is displayed.
- Press the \(\text{R/S} \) key for 2 seconds or more while pressing the \(\text{SET} \) key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
9.2 Changing the Display Position of STOP during the Control Stop

The display position of “STOP” showing the control stop state can be changed.

Description of function

The STOP position of the STOP character can be selected; on the SV display or on the PV display.

![Display Position Diagram]

- In the above figure RZ400 is used for explanation, but the operation is the same for RZ100.

Parameter setting

- STOP display selection

 [Initial setting mode: Cad 1030]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
</table>
| `SPCH` | 0: STOP on PV display
 1: STOP on SV display | 1 |

To show the “STOP display selection,” enter the Expanded display mode by setting the “Display mode selection” at `Cod 0003` in the Initial setting mode.

Setting procedure

STOP display selection can be set at `Cod 1030` in the Initial setting mode.

Procedure to enter the Initial setting mode

1. Press the SET key repeatedly till `LCK` appears
2. While pressing the SET key, press the UP key for 2 seconds or more
3. Press the SET key repeatedly till `LCP:` appears
4. Set “1” (Initial setting mode display)

Continued on the next page.
Continued from the previous page.

- Next parameter is displayed.
- Set the “Display mode selection” at Cod 0003 in the Initial setting mode to “0: Standard display mode.”
- Press the key for 2 seconds or more while pressing the key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
9. DISPLAY FUNCTION

9.3 Hiding the Display of the Set Value (SV)

On the normal PV/SV monitor screen, the Set value (SV) is displayed on the set value (SV) display unit. This display can be turned OFF.

- **Description of function**

 ![With set value (SV) display](image1)

 ![Without set value (SV) display](image2)

 In the above figure RZ400 is used for explanation, but the operation is the same for RZ100.

- **Parameter setting**

 - **Show/Hide SV display**

 [Initial setting mode: Cod 102 l]

Parameter symbol	**Data range**	**Factory set value**
dSV	0: Show SV	0
1: Hide SV		

 To show the “Show/Hide SV display,” enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.

- **Setting procedure**

 Show/Hide SV display can be set at Cod 102 l in the Initial setting mode.

 Procedure to enter the Initial setting mode

 1. **Monitor display mode PV/SV monitor**

 While pressing the SET key, press the SET key for 2 seconds or more

 2. **Parameter setting mode Alarm 1 set value**

 Press the SET key repeatedly till LCK appears

 Another parameter may be displayed depending on the specification

 3. **Set data lock**

 Set “1”

 Initial setting mode display

 Continued on the next page.
Continued from the previous page.

- Next parameter is displayed.
- Set the “Display mode selection” at Cod 0003 in the Initial setting mode to “0: Standard display mode.”
- Press the keys for 2 seconds or more while pressing the key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
This chapter describes alarm related functions, setting contents and setting procedure based on the key words related to alarms.

10.1 Using Alarm Function ... 10-2
 10.1.1 Setting procedure for alarm function 10-2
 10.1.2 Changing alarm type .. 10-8
 10.1.3 Setting a differential gap in alarm action 10-14
 10.1.4 Preventing alarm from turning on due to a transient abnormal input .. 10-16
 10.1.5 Keeping the alarm state (Interlock function) 10-19
 10.1.6 Releasing the alarm state (Interlock release) 10-21

10.2 Using Control Loop Break Alarm (LBA) 10-23

10.3 Using Heater Break Alarm (HBA) (Optional) 10-32
 10.3.1 Setting procedure for Heater break alarm (HBA) 10-32
 10.3.2 Setting the Heater break alarm (HBA) set value 10-38
 10.3.3 Changing the current transformer (CT) type 10-40
 10.3.4 Preventing Heater break alarm (HBA) from turning on due to a transient abnormal input .. 10-42
 10.3.5 Keeping the Heater break alarm (HBA) state (Interlock function) 10-44
 10.3.6 Releasing Heater break alarm (HBA) state (Interlock release) 10-45

10.4 Keeping the Alarm State in STOP Mode 10-46

10.5 Checking Alarm ON State ... 10-48
10.1 Using Alarm Function

10.1.1 Setting procedure for alarm function

Set alarm as follows:

1. **Set the Alarm type**
 - Set the Alarm type.
 - For alarm type, refer to 10.1.2 Changing alarm type (P. 10-8).

2. **Set the parameter related to alarm output**
 - Set the parameter related to Alarm output.
 - Output assignment of Alarm
 - Output energize/de-energize when assigned to alarm
 - For output assignment of Alarm, refer to 7.1 Changing Output Assignment (P. 7-2).
 - For output energize/de-energize when assigned to alarm, refer to 7.4 Changing Alarm Output (Energize/De-energize) (P. 7-12).

3. **Setting alarm action at control stop**
 - Set the Action selection at STOP mode.
 - For alarm selection at STOP mode, refer to 10.4 Keeping the Alarm State in STOP Mode (P. 10-46).

4. **Set the Alarm parameter**
 - Set the following parameters:
 - Alarm differential gap
 - Alarm action at input burnout
 - Alarm timer
 - Alarm interlock
 - For alarm differential gap, refer to 10.1.3 Setting a differential gap in alarm action (P. 10-14).
 - For alarm action at input burnout, refer to 6.4 Changing Error Handling at Input Error (P. 6-10).
 - For alarm timer, refer to 10.1.4 Preventing alarm from turning on due to a transient abnormal input (P. 10-16).
 - For alarm interlock, refer to 10.1.5 Keeping the alarm state (Interlock function) (P. 10-19) and 10.1.6 Releasing the alarm state (Interlock release) (P. 10-21).

5. **Set the Alarm set value**
 - Set the Alarm set value.
 - For alarm set value, refer to 5.5 Setting the Alarm Set Value (P. 5-13).
Setting example: Set the Alarm 1 (Model code: RZ100-MNM * NNN/N)

Alarm 1 type

[Initial setting mode: Code 0000]
- **Alarm 1 type (ALM1):** Deviation high/low with hold action
 - [Set value: 20]
 - (Factory set value: 1 *)

Alarm output condition

[Initial setting mode: Code 0002]
- **Output assignment of Alarm 1 (oAL1):** Output 3 (OUT3)
 - [Set value: 3]
 - (Factory set value: 3 *)
- **Output 3 (OUT3) energize/de-energize when assigned to alarm (EXC3):** Energize
 - [Set value: 0]
 - (Factory set value: 0)

Alarm action at control stop

[Initial setting mode: Code 1030]
- **Action selection at STOP mode (SS):** Stop alarm at control stop
 - [Set value: 0000]
 - (Factory set value: 0000)

Setup parameters for Alarm 1

[Initial setting mode: Code 1041]
- **Alarm 1 differential gap (AH1):** Supplied
 - [Set value: 2]
 - (Factory set value: 2)
- **Alarm 1 action at input burnout (ABO1):** ON at over-scale or underscale
 - [Set value: 3]
 - (Factory set value: 3)
- **Alarm 1 timer (ALT1):** 2 seconds
 - [Set value: 2]
 - (Factory set value: 0)
- **Alarm 1 interlock (AIL1):** Used
 - [Set value: on]
 - (Factory set value: oFF)

Set value of Alarm 1

[Parameter setting mode]
- **Alarm 1 set value (AL1):** 100
 - [Set value: 100]
 - (Factory set value: 10)

* Model code: RZ100-MNM * NNN/N

If parameters in the Initial setting mode cannot be changed, exit the Initial setting mode once and press the Shift key for 1 second or longer to stop the control. Reenter the Initial setting mode for adjustment.

To stop the control when switching the Initial setting mode, refer to **8.2 Continuing the Control when Entering the Initial Setting Mode (P. 8-5)**.

In the following procedure RZ100 is used for explanation, but the operation is the same for RZ400.

Setting procedure

Enabling parameter to be set

1. Monitor display mode (PV/SV monitor screen)
2. Parameter setting mode (Alarm 1 set value screen)
3. Parameter setting mode (Set data lock screen)
4. Parameter setting mode (Set data lock screen)
10. ALARM FUNCTION

5 Parameter setting mode
 (Alarm 1 set value screen)
 Press the Shift key for 2 seconds
 or more while pressing the SET
 key to go to the Initial setting
 mode.

6 Initial setting mode
 (Initial setting code screen)
 Press the Up key three times to
 change the Initial setting code to
 "0003."

7 Initial setting mode
 (Display mode selection screen)
 Press the SET key to go to the
 Display mode selection screen.

8 Initial setting mode
 (Display mode selection screen)
 Enter “1” at the Display mode
 selection using the Up key to
 change the display mode to
 “Expanded display mode.”

 For details, refer to 9.1
 Releasing the Display
 Restriction of the
 Parameters (P. 9-2).

9 Initial setting mode
 (Display mode selection screen)
 Press the SET key to store
 the new value.
 The display goes to the Initial
 setting code screen.

10 Initial setting mode
 (Initial setting code screen)
 Press the Down key three times
 to change the Initial setting code
 to "0000."

- Setting up Alarm 1 type

1 Initial setting mode
 (Initial setting code screen)
 Press the Down key three times
 to change the Initial setting code
 to "0000."

2 Initial setting mode
 (Initial setting code screen)
 Press the SET key five times to
 go to the Alarm 1 type screen.

3 Initial setting mode
 (Alarm 1 type screen)
 The alarm code of the desired
 alarm is “20.” Use Shift and Up
 keys to enter “20.”

 For details, refer to
 10.1.2 Changing alarm
 type (P. 10-8).

4 Initial setting mode
 (Alarm 2 type screen)
 Press the SET key to store
 the new value.
 The display goes to the Alarm 2
 type screen.

5 Initial setting mode
 (Alarm 2 type screen)
Setting up alarm output

1. Initial setting mode (Alarm 2 type screen)
2. Initial setting mode (Initial setting code screen)
3. Initial setting mode (Output assignment of Alarm 1)
4. Initial setting mode (Output assignment of Alarm 1)
5. Initial setting mode (Output assignment of Alarm 1)
6. Initial setting mode (Output assignment of Alarm 1)
7. Initial setting mode (Output assignment of Alarm 1)
8. Initial setting mode (Output assignment of Alarm 1)

- Press the SET key to go to the Initial setting code screen.
- Press the Up key twice to change the Initial setting code to “0002.”
- Press the SET key to go to the Output assignment of Alarm 1 screen.
- Output assignment of Alarm 1 is set to “3” as factory set value. There’s no need to change the value.
- For details, refer to 7.1 Changing Output Assignment (P. 7-2).

- Press the SET key to store the new value.
- Output 3 energize/de-energize when assigned to alarm is set to “0” as factory set value. There’s no need to change the value.
- For details, refer to 7.4 Changing Alarm Output (Energize/De-energize) (P. 7-12).

- Press the SET key to store the new value. The display goes to the Initial setting code screen.

Setting up alarm action at control stop

1. Initial setting mode (Initial setting code screen)
2. Initial setting mode (Action selection at STOP mode screen)
3. Initial setting mode (Action selection at STOP mode screen)
4. Initial setting mode (Action selection at STOP mode screen)
5. Initial setting mode (STOP display selection screen)

- Press the Up key three times to change the Initial setting code to “1030.”
- Press the SET key to go to the Action selection at STOP mode screen.
- Action selection at STOP mode is ‘0000.’ There’s no need to change the value.
- For details, refer to 10.4 Keeping the Alarm State in STOP Mode (P. 10-46).
Setting up Alarm 1

1. **Initial setting mode** (STOP display selection screen)
 - Press the SET key twice to go to the Initial setting code screen.

2. **Initial setting mode** (Initial setting code screen)
 - Press the SET key twice to go to the Initial setting code screen.

3. **Initial setting mode** (Alarm 1 differential gap screen)
 - Press the SET key to go to the Initial setting code screen.
 - Alarm 1 differential gap is set to "1041." For details, refer to 10.1.3 Setting a differential gap in alarm action (P. 10-14).

4. **Initial setting mode** (Alarm 1 action at input burnout screen)
 - Press the Up key to change the Initial setting code to "1041."

5. **Initial setting mode** (Alarm 1 action at input burnout screen)
 - Press the SET key to store the new value. The display goes to the Alarm 1 action at input burnout screen.

6. **Initial setting mode** (Alarm 1 timer screen)
 - Alarm 1 timer is currently set to "0." Use the Up key to adjust it to "2."
 - For details, refer to 6.4 Changing Error Handling at Input Error (P. 6-10).

7. **Initial setting mode** (Alarm 1 timer screen)
 - Press the SET key to store the new value. The display goes to the Alarm 1 timer screen.

8. **Initial setting mode** (Alarm 1 interlock screen)
 - Alarm 1 interlock is currently set to "off." Use the Up key to adjust it to "on."
 - For details, refer to 10.1.5 Keeping the alarm state (Interlock function) (P. 10-19) and 10.1.6 Releasing the alarm state (Interlock release) (P. 10-21).

9. **Initial setting mode** (Alarm 1 interlock screen)
 - Press the SET key to store the new value. The display goes to the Alarm 1 interlock screen.

10. **Initial setting mode** (Alarm 1 timer screen)
 - Press the SET key to store the new value. The display goes to the Initial setting code screen.

11. **Initial setting mode** (Initial setting code screen)
 - Press the SET key to store the new value. The display goes to the Initial setting code screen.
10. ALARM FUNCTION

● Setting up Alarm 1 set value

1. Initial setting mode (Initial setting code screen)
 - Press the Shift key for 2 seconds or more while pressing the SET key to go to the PV/SV monitor screen.

2. Monitor display mode (PV/SV monitor screen)
 - Press the SET key for 2 seconds or more to enter the Alarm 1 set value screen in the Parameter setting mode.

3. Parameter setting mode (Alarm 1 set value screen)
 - Alarm 1 set value is currently set to “10.” Use Shift and Up keys to enter “100.”
 - Press the SET key to store the new value. The display goes to the Autotuning (AT) screen.

4. Parameter setting mode (Autotuning screen)

5. Parameter setting mode (Autotuning screen)
 - Press and hold the SET key for 2 seconds or more to return to the PV/SV monitor screen.

6. Monitor display mode (PV/SV monitor screen)

Change the display mode to “Standard display mode” and/or hide the Initial setting mode using the Set data lock function depending on the necessity.

Refer to 9.1 Releasing the Display Restriction of the Parameters (P. 9-2) for how to change the display mode. For Set data lock, refer to 8.3 Restricting Key Operation (P. 8-7).
10.1.2 Changing alarm type

There are 21 types of alarm in total.
- Deviation high
- Deviation high with hold action
- Deviation high with re-hold action
- Deviation low
- Deviation low with hold action
- Deviation low with re-hold action
- Deviation high/low
- Deviation high/low with hold action
- Deviation high/low with re-hold action
- Deviation high/low (High/Low individual setting)
- Deviation high/low with hold action (High/Low individual setting)
- Deviation high/low with re-hold action (High/Low individual setting)
- Band
- Band (High/Low individual setting)
- Process high
- Process high with hold action
- Process low
- Process low with hold action
- SV high
- SV low
- Monitor during RUN

Control loop break alarm (LBA) is also selectable. For more details, refer to 10.2 Using Control Loop Break Alarm (LBA) (P. 10-23).

Description of function

- Deviation action

When the deviation (PV – SV) reaches the Alarm set value, alarm ON occurs.

ON: Alarm action turned on
OFF: Alarm action turned off

\[ON: \text{Alarm set value} \leftrightarrow \text{ON} \quad OFF: \text{Alarm set value} \leftrightarrow \text{OFF} \]

Deviation high

When the deviation (PV – SV) is more than the Alarm set value, the alarm ON occurs.

\[\text{Alarm set value is greater than 0.} \quad \text{Alarm set value is less than 0.} \]

\[
\begin{array}{cccc}
\text{Low} & \text{OFF} & \text{ON} & \text{High} \\
\text{OFF} & \uparrow \downarrow & \triangle & \triangle \\
\text{PV} & \text{ON} & \text{OFF} & \text{High} \\
\end{array}
\]

Deviation low

When the deviation (PV – SV) is less than the Alarm set value, the alarm ON occurs.

\[\text{Alarm set value is greater than 0.} \quad \text{Alarm set value is less than 0.} \]

\[
\begin{array}{cccc}
\text{Low} & \text{ON} & \text{OFF} & \text{High} \\
\text{ON} & \uparrow \downarrow & \triangle & \triangle \\
\text{PV} & \text{OFF} & \text{ON} & \text{High} \\
\end{array}
\]
10. ALARM FUNCTION

Deviation high/low

Two types of Deviation high/low action are available.

Without high/low individual setting:
- When the absolute deviation $|PV - SV|$ is more/less than the Alarm set values, the alarm ON occurs.

With high/low individual setting:
- High action: When the deviation $(PV - SV)$ is more than the Alarm set value [high], the alarm ON occurs.
- Low action: When the deviation $(PV - SV)$ is less than the Alarm set value [low], the alarm ON occurs.

(WITHOUT HIGH/LOW INDIVIDUAL SETTING) (WITH HIGH/LOW INDIVIDUAL SETTING)

<table>
<thead>
<tr>
<th></th>
<th>ON</th>
<th>T</th>
<th>OFF</th>
<th>T</th>
<th>ON</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Band

Two types of Band action are available.

Without high/low individual setting:
- When the absolute deviation $|PV - SV|$ is within the Alarm set values, the alarm ON occurs.

With high/low individual setting:
- High action: When the deviation $(PV - SV)$ is less than the Alarm set value [high], the alarm ON occurs.
- Low action: When the deviation $(PV - SV)$ is more than the Alarm set value [low], the alarm ON occurs.

(WITHOUT HIGH/LOW INDIVIDUAL SETTING) (WITH HIGH/LOW INDIVIDUAL SETTING)

<table>
<thead>
<tr>
<th></th>
<th>OFF</th>
<th>T</th>
<th>ON</th>
<th>T</th>
<th>OFF</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input value action

When the Measured value (PV) reaches the Alarm set value, the alarm ON occurs.

ON: Alarm action turned on
OFF: Alarm action turned off

(▲: Set value (SV) △: Alarm set value □: Alarm differential gap)

Process high

When the measured value (PV) is more than the Alarm set values, the alarm ON occurs.

Process low

When the measured value (PV) is less than the Alarm set value, the alarm ON occurs.
10. ALARM FUNCTION

● **Set value action**
When the Set value (SV) reaches the Alarm set value, alarm ON occurs.

ON: Alarm action turned on
OFF: Alarm action turned off

(▲: Set value (SV) △: Alarm set value □: Alarm differential gap)

SV high
When the Set value (SV) is more than the Alarm set values, the alarm ON occurs.

SV low
When the Set value (SV) is less than the Alarm set values, the alarm ON occurs.

● **Monitor during RUN**
Alarm ON at RUN (Alarm OFF at STOP)
Useful for operations such as turning on an indicator lamp or a rotary beacon light.

⚠️ If “Monitor during RUN” is selected, setting of Alarm set values (Parameter setting mode) and Alarm action differential gap (Initial setting mode) will be disabled.

● **Hold action**
When Hold action is ON, the alarm action is suppressed at start-up or STOP to RUN until the Measured value (PV) has entered the non-alarm range.

Example:
● Re-hold action

When Re-hold action is ON, the alarm action is also suppressed at the control set value (SV) change until the Measured value (PV) has entered the non-alarm range.

<table>
<thead>
<tr>
<th>Action condition</th>
<th>Hold action</th>
<th>Re-hold action</th>
</tr>
</thead>
<tbody>
<tr>
<td>When the power is turned on</td>
<td>With function</td>
<td>With function</td>
</tr>
<tr>
<td>When transferred from STOP (control STOP) to RUN (control RUN)</td>
<td>With function</td>
<td>With function</td>
</tr>
<tr>
<td>When the set value (SV) is changed</td>
<td>Without function</td>
<td>With function</td>
</tr>
</tbody>
</table>

Example: When Alarm 1 type is the deviation low

When Re-hold action is OFF and alarm output type is deviation, the alarm output is produced due to the Set value (SV) change. The re-hold action suppresses the alarm output until the Measured value (PV) has entered the non-alarm range again.
Parameter setting

Alarm 1 and 2 type
[Initial setting mode: **Cod 0000]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALM1</td>
<td>0: None</td>
<td>When alarm code is specified at the time of ordering, the Alarm type in the alarm code is the factory setting.</td>
</tr>
<tr>
<td></td>
<td>1: Deviation high</td>
<td>If Alarm type is not specified, factory setting depends on the specification (with or without outputs).</td>
</tr>
<tr>
<td></td>
<td>2: Deviation high/low</td>
<td>If alarm output is assigned, Alarm type is “Deviation high.” If not assigned, Alarm type is “None.”</td>
</tr>
<tr>
<td></td>
<td>3: Process high</td>
<td>For details, refer to 1.3 Model Code (P. 1-4).</td>
</tr>
<tr>
<td></td>
<td>4: Deviation low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5: Deviation low/low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6: Band</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7: Process low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8: Deviation low with re-hold action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9: Deviation high with re-hold action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10: Deviation high/low with re-hold action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11: Process high with hold action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12: Deviation low with re-hold action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13: Deviation low/low with re-hold action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14: Process low with hold action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15: Deviation high/low (High/Low individual setting)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16: Deviation high/low (High/Low individual setting)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17: Band (High/Low individual setting)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18: Deviation high/low with re-hold action (High/Low individual setting)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19: Deviation high with hold action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20: Deviation high/low with hold action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21: Deviation low with hold action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22: Deviation high/low with hold action (High/Low individual setting)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23: SV high</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24: SV low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25: Monitor during RUN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26: Control loop break alarm (LBA)</td>
<td></td>
</tr>
</tbody>
</table>

* Settable only for Alarm 2 type.
Do not set 4, 8, 12, and 14.
Setting procedure

Alarm type can be set at Cod 0000 in the Initial setting mode.

Procedure to enter the Initial setting mode

1. Monitor display mode
 - PV/SV monitor
 - [SET] key, press [RV/F] key for 2 seconds or more

2. Parameter setting mode
 - Alarm 1 set value
 - Another parameter may be displayed depending on the specification
 - Press the SET key repeatedly till "LCK" appears

3. Set data lock
 - Set "1"
 - Initial setting mode display
 - 2 seconds or more
 - While pressing the SET key, press the RV/F key for 2 seconds or more

4. Initial setting mode
 - Initial setting code
 - [SET] key, press [RV/F] key 5 times

5. Alarm 1 type
 - Set Alarm 1 type

6. Alarm 2 type
 - Set Alarm 2 type

Setting End

- Next parameter is displayed.
- Press the [RV/F] key for 2 seconds or more while pressing the [SET] key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
10. ALARM FUNCTION

10.1.3 Setting a differential gap in alarm action

- Description of function

It prevents chattering of alarm output due to the Measured value (PV) fluctuation around the Alarm set value.

![Diagram showing differential gap in alarm action]

- Parameter setting

 - **Alarm 1 and 2 differential gap**

 - Initial setting mode: \textit{Cod} 1041, \textit{Cod} 1042

Parameter symbol	Data range	Factory set value
\textit{AH1}	0 to 9999 or 0.0 to 999.9 (Unit: \textdegree{}C [\textdegree{}F])	2 or 2.0
\textit{AH2}	Varies with the setting of the Decimal point position.	

 - To show the “Alarm 1 differential gap” and “Alarm 2 differential gap,” enter the Expanded display mode by setting the “Display mode selection” at \textit{Cod} 0003 in the Initial setting mode.

 - To show the “Alarm 1 differential gap,” set a value other than “None” and “Monitor during RUN” at \textit{Cod} 0000 (Alarm 1 type) in the Initial setting mode.

 - To show the “Alarm 2 differential gap,” set a value other than “None,” “Monitor during RUN,” and “Control loop break alarm (LBA)” at \textit{Cod} 0000 (Alarm 2 type) in the Initial setting mode.

- For alarm output, refer to 7.1 Changing Output Assignment (P. 7-2).

- For alarm type, refer to 10.1.2 Changing alarm type (P. 10-8).
Setting procedure

- Alarm 1 differential gap can be set at `Cod 1041` in the Initial setting mode.
- Alarm 2 differential gap can be set at `Cod 1042` in the Initial setting mode.

Procedure to enter the Initial setting mode

1. **Monitor display mode**
 - **PV/SV monitor**

2. **Parameter setting mode**
 - **Alarm 1 set value**

3. **Set data lock**
 - **Press the SET key repeatedly till LCK appears**
 - **Set “1” Initial setting mode display**

4. **Initial setting mode**
 - **Initial setting code**

5. **Display mode selection**
 - **Set “1: Expanded display mode”**

6. **Alarm 1 differential gap**
 - **Set Alarm 1 differential gap**
 - **To continue setting**

7. **Alarm 2 differential gap**
 - **Set Alarm 2 differential gap**
 - **To continue setting**

- **Setting End**

- Next parameter is displayed.
- Set the “Display mode selection” at `Cod 0003` in the Initial setting mode to “0: Standard display mode.”
- Press the key for 2 seconds or more while pressing the key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
10.1.4 Preventing alarm from turning on due to a transient abnormal input

Alarm timer can be used to prevent alarm from turning on for the alarm state shorter than the set time.

- **Description of function**

When an alarm condition becomes ON, the output is suppressed until the Alarm timer set time elapses. If the alarm output is still ON after the time is up, the output will resume.

Example: When the setting of Alarm 1 timer is 50 seconds

The Alarm timer is also activated for the following reasons:
- When set to the alarm state simultaneously with power turned on
- When set to the alarm state simultaneously with control changed to RUN (control start) from STOP (control stop)

In the alarm wait state, no alarm output is turned on even after the Alarm timer preset time has elapsed.

Alarm timer will be reset if the following circumstances occur when the Alarm timer is activated:
- Power failure
- Change to STOP (control stop) from RUN (control start)
- Cancellation of Alarm state
Parameter setting

Alarm 1 and 2 timer

[Initial setting mode: \texttt{Cod 1041}, \texttt{Cod 1042}]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{ALT1}</td>
<td>0 to 600 seconds</td>
<td>0</td>
</tr>
<tr>
<td>\texttt{ALT2}</td>
<td>0 to 600 seconds</td>
<td>0</td>
</tr>
</tbody>
</table>

To show the “Alarm 1 timer” and “Alarm 2 timer,” enter the Expanded display mode by setting the “Display mode selection” at \texttt{Cod 0003} in the Initial setting mode.

To show the “Alarm 1 timer,” set a value other than “None” at \texttt{Cod 0000} (Alarm 1 type) in the Initial setting mode.

To show the “Alarm 2 timer,” set a value other than “None” at \texttt{Cod 0000} (Alarm 2 type) in the Initial setting mode.

For alarm output, refer to 7.1 Changing Output Assignment (P. 7-2).

For alarm type, refer to 10.1.2 Changing alarm type (P. 10-8).

Setting procedure

- Alarm 1 timer can be set at \texttt{Cod 1041} in the Initial setting mode.
- Alarm 2 timer can be set at \texttt{Cod 1042} in the Initial setting mode.

Procedure to enter the Initial setting mode

1. **Monitor display mode**
 - PV/SV monitor
2. **Parameter setting mode**
 - Alarm 1 set value
3. **Set data lock**
 - Press the SET key repeatedly until \texttt{LCK} appears
4. **While pressing the**
 - key, press the \texttt{ESC} key for 2 seconds or more
5. **Initial setting mode**
 - Initial setting code
6. **Display mode selection**
 - Set “1: Expanded display mode”

Continued on the next page.
Continued from the previous page.

- Next parameter is displayed.
- Set the “Display mode selection” at $\text{Cod} 0003$ in the Initial setting mode to “0: Standard display mode.”
- Press the R/S key for 2 seconds or more while pressing the SET key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
10.1.5 Keeping the alarm state (Interlock function)

Description of function

The Alarm interlock function holds the alarm state even if the Measured value (PV) is out of the alarm zone after it enters the alarm zone once.

Example: When the Alarm interlock function is used for Deviation high

![Diagram of alarm interlock function]

For the interlock release, refer to 10.1.6 Releasing the alarm state (Interlock release) (P. 10-21).

Parameter setting

- **Alarm 1 and 2 interlock**

 Initial setting mode: Cod 1041, Cod 1042

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIL1</td>
<td>oFF: Unused on: Used</td>
<td>oFF</td>
</tr>
<tr>
<td>AIL2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 - To show the “Alarm 1 interlock” and “Alarm 2 interlock,” enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.
 - To show the “Alarm 1 interlock,” set a value other than “None” at Cod 0000 (Alarm 1 type) in the Initial setting mode.
 - To show the “Alarm 2 interlock,” set a value other than “None” at Cod 0000 (Alarm 2 type) in the Initial setting mode.
 - Interlock function can be used even when “Control loop break alarm (LBA)” is specified for Alarm 2 type. Once the LBA has turned on, the LBA interlock maintains the alarm ON state even if LBA OFF conditions are met. For the interlock release, refer to 10.1.6 Releasing the alarm state (Interlock release) (P. 10-21).

 For alarm output, refer to 7.1 Changing Output Assignment (P. 7-2).

 For alarm type, refer to 10.1.2 Changing alarm type (P. 10-8).
10. ALARM FUNCTION

Setting procedure

- Alarm 1 interlock can be set at Cod 1041 in the Initial setting mode.
- Alarm 2 interlock can be set at Cod 1042 in the Initial setting mode.

Procedure to enter the Initial setting mode

Monitor display mode
PV/SV monitor

Parameter setting mode
Alarm 1 set value

Set data lock

Initial setting mode
Initial setting code

Display mode selection

- Next parameter is displayed.
- Set the “Display mode selection” at Cod 0003 in the Initial setting mode to “0: Standard display mode.”
- Press the key for 2 seconds or more while pressing the key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
10.1.6 Releasing the alarm state (Interlock release)

Description of function

The Alarm interlock function holds the alarm state even if the Measured value (PV) is out of the alarm zone after it enters the alarm zone once.

In case of Control loop break alarm (LBA), once the LBA has turned ON, the LBA ON state is kept even if LBA OFF conditions are met. Alarm interlock can be released by key operation or communication (optional function).

The following picture shows how to release the interlock.

The Interlock release has an influence to all alarms, Control loop break alarm (LBA) and Heater break alarm (HBA)* that are in the interlock state and releases such alarms at one time whose interlock release conditions are met.

Refer to 12. COMMUNICATION FUNCTION (P. 12-1) for Interlock release through communication.

* Optional function
10. ALARM FUNCTION

Parameter setting

- **Interlock release**

 [SV setting mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rILr</td>
<td>oFF: Interlock release</td>
<td>oFF</td>
</tr>
<tr>
<td></td>
<td>on: Interlock state</td>
<td></td>
</tr>
</tbody>
</table>

To show the “Interlock release (rILr),” “Interlock” parameter must be set to “on: Used” at any one of “Alarm 1 interlock” (Cod 1041 in the Initial setting mode), “Alarm 2 interlock” (Cod 1042 in the Initial setting mode), or “HBA1 interlock” or “HBA2 interlock” in Cod 1045 in the Initial setting mode. Without this setting, the Interlock release parameter is not displayed.

Setting procedure

The Interlock release can be found in the SV setting mode.

[Releasing the Interlock]

In the interlock state, the display in the Interlock release automatically turns on (on).

![Diagram](image-url)
10.2 Using Control Loop Break Alarm (LBA)

Setting procedure for control loop break alarm (LBA)

Control loop break alarm (LBA) is one of alarm functions. Because of this reason, many of the setting items for Control loop break alarm (LBA) are common to the alarm function. However, it should be noted that Control loop break alarm (LBA) can be assigned to Alarm 2 only.

Set Control loop break alarm (LBA) as follows:

1. Set the Alarm type
 - For alarm type, refer to 10.1.2 Changing alarm type (P. 10-8).

2. Set the parameter related to alarm output
 - Output assignment of Alarm
 - Output energize/de-energize when assigned to alarm
 - For output assignment of Alarm, refer to 7.1 Changing Output Assignment (P. 7-2).
 - For output energize/de-energize when assigned to alarm, refer to 7.4 Changing Alarm Output (Energize/De-energize) (P. 7-12).

3. Set the Alarm parameter
 - Alarm action at input burnout
 - Alarm timer
 - Alarm interlock
 - For alarm action at input burnout, refer to 6.4 Changing Error Handling at Input Error (P. 6-10).
 - For alarm timer, refer to 10.1.4 Preventing alarm from turning on due to a transient abnormal input (P. 10-16).
 - For alarm interlock, refer to 10.1.5 Keeping the alarm state (Interlock function) (P. 10-19) and 10.1.6 Releasing the alarm state (Interlock release) (P. 10-21).

4. Set LBA time and LBD
 - Control loop break alarm (LBA) time
 - LBA deadband (LBD)
 - For the parameter description, refer to Description of function (P. 10-29).
 - For the data range of parameter, refer to Parameter setting (P. 10-30).
 - For the operation of parameter, refer to Setting procedure (P. 10-31).
Setting example: Setting Control loop break alarm (LBA) on Alarm 2
(Model code: RZ100-MNM * NNN/N) [Alarm 1 is not used]

- **Alarm 2 type**
 - Initial setting mode: \[\text{cod} \, 0000\]
 - Alarm 2 type (/\text{ALM} \, 2/): Control loop break alarm (LBA)
 - Set value: 26
 - Factory set value: 0 *)

- **Alarm output condition**
 - Initial setting mode: \[\text{cod} \, 0002\]
 - Output assignment of Alarm 1 (/\text{oAL} \, 1/): No assignment
 - Set value: 0
 - Factory set value: 3 *)
 - Output assignment of Alarm 2 (/\text{oAL} \, 2/): Output 3 (OUT3)
 - Set value: 3
 - Factory set value: 0 *)
 - Output 3 (OUT3) energize/de-energize when assigned to alarm (/\text{EX} \, 3/):
 - Energize
 - Set value: 0
 - Factory set value: 0)

- **Setup parameters for Alarm 2**
 - Initial setting mode: \[\text{cod} \, 1042\]
 - Alarm 2 action at input burnout (/\text{rbo} \, 2/): ON at over-scale or underscale
 - Set value: 3
 - Factory set value: 3 *)
 - Alarm 2 timer (/\text{Alt} \, 2/): 2 seconds
 - Set value: 2
 - Factory set value: 0 *)
 - Alarm 2 interlock (/\text{AIL} \, 2/): Used
 - Set value: on
 - Factory set value: off *)

- **Set value of Control loop break alarm (LBA)**
 - Parameter setting mode
 - Control loop break alarm (LBA) time (/\text{lbA}/): 8.0
 - Set value: 8.0
 - Factory set value: 8.0
 - LBA deadband (/\text{Lbd}/): 10
 - Set value: 10
 - Factory set value: 0)

* Model code: RZ100-MNM * NNN/N

If parameters in the Initial setting mode cannot be changed, exit the Initial setting mode once and press the Shift key for 1 second or longer to stop the control. Reenter the Initial setting mode for adjustment.

To stop the control when switching the mode to the Initial setting, refer to 8.2 Continuing the Control when Entering the Initial Setting Mode (P. 8-5).

In the following procedure RZ100 is used for explanation, but the operation is the same for RZ400.

[Setting procedure]

- **Enabling parameter to be set**
 1. Monitor display mode (PV/SV monitor screen)
 2. Parameter setting mode (Alarm 1 set value screen)
 3. Parameter setting mode (Set data lock screen)
 4. Press and hold the SET key for 2 seconds to go to the Parameter setting mode.
 2. Press the SET key several times to show the Set data lock screen. Another parameter may be displayed depending on the specification.
 3. To enter the Initial setting mode, use Shift and Up keys to set “1” at the highest digit.
 4. Press the SET key to store the new value. The display goes to the Alarm 1 set value screen. Another parameter may be displayed depending on the specification.
10. ALARM FUNCTION

5 Parameter setting mode (Alarm 1 set value screen)

Press the Shift key for 2 seconds or more while pressing the SET key to go to the Initial setting mode.

6 Initial setting mode (Initial setting code screen)

Press the Up key three times to change the Initial setting code to "0003."

7 Initial setting mode (Display mode selection screen)

Press the SET key to go to the Display mode selection screen.

8 Initial setting mode (Display mode selection screen)

Enter "1" at the Display mode selection using the Up key to change the display mode to "Expanded display mode."

For details, refer to 9.1 Releasing the Display Restriction of the Parameters (P. 9-2).

- Setting up Alarm 2 type

1 Initial setting mode (Initial setting code screen)

Press the Down key three times to change the Initial setting code to "0000."

2 Initial setting mode (Initial setting code screen)

Press the SET key six times to go to the Alarm 2 type screen.

3 Initial setting mode (Alarm 2 type screen)

The alarm code of the desired alarm is "26." Use Shift and Up keys to enter "26."

For details, refer to 10.1.2 Changing alarm type (P. 10-8).

4 Initial setting mode (Initial setting code screen)

Press the SET key to store the new value. The display goes to the Initial setting code screen.

5 Initial setting mode (Initial setting code screen)

Press the SET key to store the new value. The display goes to the Initial setting code screen.
10. ALARM FUNCTION

- Setting up alarm output

1. Initial setting mode (Initial setting code screen)

 Press the Up key twice to change the Initial setting code to "0002."

2. Initial setting mode (Output assignment of Alarm 1)

 Press the SET key twice to go to the Output assignment of Alarm 1 screen.

 Output assignment of Alarm 1 is currently set to "3." Use the Down key to adjust it to "0."

 If the set value remains "3," Alarm 1 and Alarm 2 are output as a logical sum (OR). Change the Output assignment of Alarm 1 to "No assignment."

3. Initial setting mode (Output assignment of Alarm 2)

 Output assignment of Alarm 2 is currently set to "0." Use the Up key to adjust it to "3."

 For details, refer to 7.1 Changing Output Assignment (P. 7-3).

4. Initial setting mode (Output assignment of Alarm 2)

 Press the SET key to store the new value. The display goes to the Output assignment of Alarm 2 screen.

5. Initial setting mode (Output assignment of Alarm 2)

 Output assignment of Alarm 2 is currently set to "0." Use the Up key to adjust it to "3."

6. Initial setting mode (Output assignment of Alarm 2)

 Press the SET key twice to go to the Output assignment of Alarm 1 screen.

 Output assignment of Alarm 1 is currently set to "3." Use the Down key to adjust it to "0."

 If the set value remains "3," Alarm 1 and Alarm 2 are output as a logical sum (OR). Change the Output assignment of Alarm 1 to "No assignment."

7. Initial setting mode (Output assignment of Alarm 2)

 Output 3 energize/de-energize when assigned to alarm is set to "0" as factory set value. There’s no need to change the value.

 For details, refer to 7.4 Changing Alarm Output (Energize/De-energize) (P. 7-12).

8. Initial setting mode (Output assignment of Alarm 2)

 Press the SET key to store the new value. The display goes to the Initial setting code screen.

9. Initial setting mode (Initial setting code screen)
Setting up Alarm 2

1. **Initial setting mode**
 (Initial setting code screen)
 - Press the Up key five times to change the Initial setting code to "1042."

2. **Initial setting mode**
 (Alarm 2 action at input burnout screen)
 - Press the SET key twice to go to the Alarm 2 action at input burnout screen.

3. **Initial setting mode**
 (Alarm 2 action at input burnout screen)
 - Alarm 2 action at input burnout is set to "3" as factory set value. There's no need to change the value.
 - Press the SET key to store the new value.
 - The display goes to the Alarm 2 timer screen.

4. **Initial setting mode**
 (Alarm 2 timer screen)
 - Alarm 2 timer is currently set to "0." Use the Up key to adjust it to "2."
 - Press the SET key to store the new value.
 - The display goes to the Alarm 2 action at input burnout screen.

5. **Initial setting mode**
 (Alarm 2 timer screen)
 - For details, refer to 6.4 Changing Error Handling at Input Error (P. 6-10).

6. **Initial setting mode**
 (Alarm 2 timer screen)
 - Press the SET key twice to go to the Alarm 2 timer screen.

7. **Initial setting mode**
 (Alarm 2 interlock screen)
 - Alarm 2 interlock is currently set to "off." Use the Up key to adjust it to "on."
 - Press the SET key to store the new value.
 - The display goes to the Initial setting code screen.

8. **Initial setting mode**
 (Initial setting code screen)

9. **Initial setting mode**
 (Initial setting code screen)
Setting up Control loop break alarm (LBA) set value

1. Initial setting mode
 (Initial setting code screen)

 Press the Shift key for 2 seconds or more while pressing the SET key to go to the PV/SV monitor screen.

2. Monitor display mode
 (PV/SV monitor screen)

 Press and hold the SET key for 2 seconds to go to the Parameter setting mode.
 Press the SET key several times to show the Control loop break alarm (LBA) time screen. Another parameter may be displayed depending on the specification.

3. Parameter setting mode
 (Control loop break alarm time screen)

 Control loop break alarm (LBA) time is set to "8.0" as factory set value. There’s no need to change the value.
 For details, see from P. 10-29 to P. 10-31.

4. Monitor display mode
 (PV/SV monitor screen)

 Press the SET key to store the new value. The display goes to the LBA deadband (LBD) screen.

5. Parameter setting mode
 (LBA deadband screen)

 LBA deadband (LBD) is currently set to "0." Use Shift and Up keys to enter "10."
 For details, see from P. 10-29 to P. 10-31.

6. Parameter setting mode
 (Control loop break alarm time screen)

 Press the SET key to store the new value. The display goes to the Autotuning (AT) screen.

7. Parameter setting mode
 (Autotuning screen)

 Press and hold the SET key for 2 seconds or more to return to the PV/SV monitor screen.

8. Monitor display mode
 (PV/SV monitor screen)

 Press and hold the SET key for 2 seconds or more while pressing the SET key to go to the PV/SV monitor screen.

Change the display mode to “Standard display mode” and/or hide the Initial setting mode using the Set data lock function depending on the necessity.

Refer to 9.1 Releasing the Display Restriction of the Parameters (P. 9-2) for how to change the display mode. For Set data lock, refer to 8.3 Restricting Key Operation (P. 8-7).
Description of function

The Control loop break alarm (LBA) function is used to detect a load (heater) break or a failure in the external actuator (power controller, magnet relay, etc.), or a failure in the control loop caused by an input (sensor) break. The LBA function is activated when control output reaches 0 % (low limit with output limit function) or 100 % (high limit with output limit function). LBA monitors variation of the Measured value (PV) for the length of LBA time. When the LBA time has elapsed and the PV is still within the alarm determination range, the LBA will be ON.

[Alarm action]
LBA determination range: 2 °C [°F] (fixed)

<table>
<thead>
<tr>
<th>Heating control</th>
<th>When the output reaches 0 % (low limit with output limit function)</th>
<th>When the output exceeds 100 % (high limit with output limit function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBA occurring condition</td>
<td>For reverse action: When the LBA time has passed and the Measured value (PV) has not fallen below the alarm determination range, the alarm will be turned on.</td>
<td>For direct action: When the LBA time has passed and the Measured value (PV) has not risen beyond the alarm determination range, the alarm will be turned on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heat/Cool control</th>
<th>When the heat-side output exceeds 100 % (high limit with heat-side output limit function) and the cool-side output reaches 0 % (A) *</th>
<th>When the heat-side output reaches 100 % (high limit with cool-side output limit function) (B) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBA occurring condition</td>
<td>When the LBA time has passed and the Measured value (PV) has not risen beyond the alarm determination range, the alarm will be turned on.</td>
<td>When the LBA time has passed and the Measured value (PV) has not fallen below the alarm determination range, the alarm will be turned on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* If conditions of (A) and (B) are both met, priority is given to (A).

LBA deadband (LBD)

The Control loop break alarm (LBA) may malfunction due to external disturbances. To prevent malfunction due to external disturbance, LBA deadband (LBD) sets a neutral zone in which Control loop break alarm (LBA) is not activated. When the Measured value (PV) is within the LBA deadband (LBD) area, Control loop break alarm (LBA) will not be activated. If the LBA deadband (LBD) setting is not correct, the LBA will not work correctly.

LBA function is not available:
- when displaying Input type and Input range after turning ON the power.
- during Autotuning (AT).
- in the STOP mode.
- when the LBA function is not assigned to Alarm 2 type.
If the Control loop break alarm (LBA) setting time does not match the controlled object requirements, the Control loop break alarm (LBA) setting time should be lengthened. If setting time is not correct, the Control loop break alarm (LBA) will malfunction by turning on or off at inappropriate times or not turning on at all.

While the LBA is ON (under alarm status), the following conditions cancel the alarm status and LBA will be OFF.
- The Measured value (PV) rises beyond (or falls below) the LBA determination range within the LBA time.
- The Measured value (PV) enters within the LBA deadband (LBD).

If the Autotuning (AT) is used, the Control loop break alarm (LBA) time is automatically set twice as large as the integral time. The Control loop break alarm (LBA) time will not change even if the integral time is changed.

If the Control loop break alarm (LBA) function detects an error occurring in the control loop, but cannot specify the location, the control loop should be checked. The Control loop break alarm (LBA) function does not detect the location which causes alarm status. If Control loop break alarm (LBA) alarm is ON, check each device or wiring in the control loop.

Parameter setting

Control loop break alarm (LBA) time [Parameter setting mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBA</td>
<td>0.1 to 200.0 minutes</td>
<td>8.0</td>
</tr>
</tbody>
</table>

To show the “Control loop break alarm (LBA) time,” set a value “Control loop break alarm (LBA)” at Cod 0000 (Alarm 2 type) in the Initial setting mode.

LBA deadband (LBD) [Parameter setting mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBD</td>
<td>0 to 9999 (Unit: °C [°F])</td>
<td>0</td>
</tr>
</tbody>
</table>

To show the “LBA deadband (LBD),” set a value “Control loop break alarm (LBA)” at Cod 0000 (Alarm 2 type) in the Initial setting mode.

For Control loop break alarm (LBA) related items except the above, refer to the following sections.
- Alarm type: 10.1.2 Changing alarm type (P. 10-8)
- Output assignment of Alarm: 7.1 Changing Output Assignment (P. 7-2)
- Output energize/de-energize when assigned to alarm: 7.4 Changing Alarm Output (Energize/De-energize) (P. 7-12)
- Action selection at STOP mode: 10.4 Keeping the Alarm State in STOP Mode (P. 10-46)
- Alarm action at input burnout: 6.4 Changing Error Handling at Input Error (P. 6-10)
- Alarm timer: 10.1.4 Preventing alarm from turning on due to a transient abnormal input (P. 10-16)
- Alarm interlock: 10.1.5 Keeping the alarm state (Interlock function) (P. 10-19) and 10.1.6 Releasing the alarm state (Interlock release) (P. 10-21)
Setting procedure

Control loop break alarm (LBA) time and LBA deadband (LBD) can be set in the Parameter setting mode.

- Set Control loop break alarm (LBA) time. Another parameter may be displayed depending on the specification.
- Press and hold the SET key for 2 seconds or more to return to the PV/SV monitor screen.
10.3 Using Heater Break Alarm (HBA) (Optional)

10.3.1 Setting procedure for Heater break alarm (HBA)

Set Heater break alarm (HBA) as follows:

1. Set the parameter related to HBA output.
 - Output assignment of Heater break alarm
 - Output energize/de-energize when assigned to alarm
 - For output assignment of Heater break alarm, refer to 7.1 Changing Output Assignment (P. 7-2).
 - For output energize/de-energize when assigned to alarm, refer to 7.4 Changing Alarm Output (Energize/De-energize) (P. 7-12).

2. Set the HBA parameter.
 - CT ratio
 - HBA determination time
 - HBA interlock
 - For CT ratio, refer to 10.3.3 Changing the current transformer (CT) type (P. 10-40).
 - For HBA determination time, refer to 10.3.4 Preventing Heater break alarm (HBA) from turning on due to a transient abnormal input (P. 10-42).
 - For HBA interlock, refer to 10.3.5 Keeping the Heater break alarm (HBA) state (Interlock function) (P. 10-44) and 10.3.6 Releasing Heater break alarm (HBA) state (Interlock release) (P. 10-45).

3. Set the HBA set value.
 - For HBA set value, refer to 10.3.2 Setting the Heater break alarm (HBA) set value (P. 10-38).

4. Set the Action selection at STOP mode.
 - For alarm selection at STOP mode, refer to 10.4 Keeping the Alarm State in STOP Mode (P. 10-46).

5. Set the parameter related to HBA output.
10. ALARM FUNCTION

Setting example: Set the Heater break alarm 1 (HBA1)
(Model code: RZ100-MNM * TNN/N)
[Alarm 1 is not used]

- **Heater break alarm (HBA) output condition**
 [Initial setting mode: C0002]
 Output assignment of Heater break alarm 1 (HBA1):
 Output 3 (OUT3) [Set value: 3] (Factory set value: 0 *)
 Output 3 (OUT3) energize/de-energize when assigned to alarm (EXC3): Energize [Set value: 0] (Factory set value: 0)

- **Alarm action at control stop**
 [Initial setting mode: C1030]
 Action selection at STOP mode (55): Stop alarm at control stop [Set value: 0000] (Factory set value: 0000)

- **Setup parameters for Heater break alarm 1 (HBA1)**
 [Initial setting mode: C1045]
 CT1 ratio (CTr1): CTL-6-P-N [Set value: 800] (Factory set value: 800 *)
 HBA1 interlock (HIL1): Used [Set value: on] (Factory set value: off)
 HBA determination time (HbT): 3 seconds [Set value: 3] (Factory set value: 3)

- **Set value of Heater break alarm 1 (HBA1)**
 [Parameter setting mode]
 Heater break alarm 1 (HBA1) set value (HbA1): 5.0 [Set value: 5.0] (Factory set value: 0.0)

* Model code: RZ100-MNM * TNN/N

- If parameters in the Initial setting mode cannot be changed, exit the Initial setting mode once and press the Shift key for 1 second or longer to stop the control. Reenter the Initial setting mode for adjustment.
- To stop the control when switching the Initial setting mode, refer to 8.2 Continuing the Control when Entering the Initial Setting Mode (P. 8-5).
- In the following procedure RZ100 is used for explanation, but the operation is the same for RZ400.

[Setting procedure]

- **Enabling parameter to be set**

1 Monitor display mode (PV/SV monitor screen)
 Press and hold the SET key for 2 seconds to go to the Parameter setting mode.

2 Parameter setting mode (Alarm 1 set value screen)
 Press the SET key several times to show the Set data lock screen. Another parameter may be displayed depending on the specification.

3 Parameter setting mode (Set data lock screen)
 To enter the Initial setting mode, use Shift and Up keys to set “1” at the highest digit. For details, refer to 8.3 Restricting Key Operation (P. 8-7).

4 Press the SET key to store the new value. The display goes to the Alarm 1 set value screen. Another parameter may be displayed depending on the specification.
10. ALARM FUNCTION

5. Parameter setting mode (Alarm 1 set value screen)

Press the Shift key for 2 seconds or more while pressing the SET key to go to the Initial setting mode.

6. Initial setting mode (Initial setting code screen)

Press the Up key three times to change the Initial setting code to "0003."

7. Initial setting mode (Display mode selection screen)

Press the SET key to go to the Display mode selection screen.

8. Initial setting mode (Display mode selection screen)

Enter "1" at the Display mode selection using the Up key to change the display mode to "Expanded display mode."

For details, refer to 9.1 Releasing the Display Restriction of the Parameters (P. 9-2).

9. Initial setting mode (Display mode selection screen)

Press the SET key to store the new value. The display goes to the Initial setting code screen.

10. Initial setting mode (Initial setting code screen)

Press the Down key three times to change the Initial setting code to "0002."

- Setting up Heater break alarm (HBA) output

1. Initial setting mode (Initial setting code screen)

Press the Down key three times to show the Output assignment of Heater break alarm 1 screen. The number of times of pressing the SET key depends on the specification.

2. Initial setting mode (Output assignment of Heater break alarm 1 screen)

Press the SET key several times to adjust to "3." Use the Up key to adjust it to "3."

For details, refer to 7.1 Changing Output Assignment (P. 7-2).

3. Initial setting mode (Output assignment of Heater break alarm 1 screen)

Output assignment of Heater break alarm 1 is currently set to "3." Use the Up key to adjust it to "3."

4. Initial setting mode (Output assignment of Heater break alarm 1 screen)

Press the SET key to store the new value. After the value has been stored, press the SET key a few times until EXC3 is displayed. The number of times of pressing the SET key depends on the specification.
10. ALARM FUNCTION

Setting up alarm action at control stop

1. Initial setting mode (Initial setting code screen)

 Press the Up key three times to change the Initial setting code to "1030."

2. Initial setting mode (Action selection at STOP mode screen)

 Press the SET key to go to the Action selection at STOP mode screen.

3. Initial setting mode (Action selection at STOP mode screen)

 Action selection at STOP mode is '0000.' There's no need to change the value.

 For details, refer to 10.4 Keeping the Alarm State in STOP Mode (P. 10-46).

4. Initial setting mode (Initial setting code screen)

 Press the SET key to store the new value. The display goes to the STOP display selection screen.

5. Initial setting mode (Output 3 (OUT3) energize/de-energize when assigned to alarm screen)

 Initial setting mode (Initial setting code screen)

 Output 3 energize/de-energize when assigned to alarm is set to "0" as factory set value. There's no need to change the value.

 For details, refer to 7.4 Changing Alarm Output (Energize/De-energize) (P. 7-12).
10. ALARM FUNCTION

● Setting up Heater break alarm 1 (HBA1)

1. Initial setting mode (STOP display selection screen)
 - Press the SET key twice to go to the Initial setting code screen.

2. Initial setting mode (Initial setting code screen)
 - Press the Up key three times to change the Initial setting code to "1045."*

3. Initial setting mode (CT1 ratio screen)
 - Press the SET key to go to the CT1 ratio screen.
 - CT1 ratio is set to "800" as factory set value. There's no need to change the value.
 - For details, refer to 10.3.3 Changing the current transformer (CT) type (P. 10-40).

4. Initial setting mode (Initial setting code screen)
 - HBA1 interlock is currently set to "off." Use the Up key to adjust it to "on."
 - For details, refer to 10.3.5 Keeping the Heater break alarm (HBA) state (Interlock function) (P. 10-44).

5. Initial setting mode (HBA1 interlock screen)
 - Press the SET key to store the new value. The display goes to the HBA1 interlock screen.
 - (Depending on the specification, another pressing the SET key may be necessary.)

6. Initial setting mode (HBA1 interlock screen)
 - Press the SET key to store the new value. The display goes to the HBA determination time screen.
 - (Depending on the specification, another pressing the SET key may be necessary.)

7. Initial setting mode (HBA determination time screen)
 - HBA determination time is set to "3" as factory set value. There's no need to change the value.
 - For details, refer to 10.3.4 Preventing Heater break alarm (HBA) from turning on due to a transient abnormal input (P. 10-42).

8. Initial setting mode (Initial setting code screen)
 - Press the SET key to store the new value. The display goes to the Initial setting code screen.

9. Initial setting mode (Initial setting code screen)

10. Initial setting mode (Initial setting code screen)
10. ALARM FUNCTION

● Setting up Heater break alarm 1 (HBA1) set value

1. Initial setting mode (Initial setting code screen)

- Press the Shift key for 2 seconds or more while pressing the SET key to go to the PV/SV monitor screen.

2. Monitor display mode (PV/SV monitor screen)

- Press and hold the SET key for 2 seconds to go to the Parameter setting mode.

3. Parameter setting mode (Alarm 1 set value screen)

- Press the SET key to go to the Heater break alarm 1 (HBA1) set value screen. Another parameter may be displayed depending on the specification.

4. Parameter setting mode (Heater break alarm 1 set value screen)

- Heater break alarm 1 (HBA1) set value is currently set to "0.0." Use Shift and Up keys to enter "5.0."

5. Parameter setting mode (Heater break alarm 1 set value screen)

- Press the SET key to store the new value. The display goes to the Autotuning (AT) screen. Another parameter may be displayed depending on the specification.

6. Parameter setting mode (Autotuning screen)

- Press and hold the SET key for 2 seconds or more to return to the PV/SV monitor screen.

7. Monitor display mode (PV/SV monitor screen)

Change the mode to “Standard display mode” and/or hide the Initial setting mode using the Set data lock function depending on the necessity.

Refer to 9.1 Releasing the Display Restriction of the Parameters (P. 9-2) for how to change the display mode. For Set data lock, refer to 8.3 Restricting Key Operation (P. 8-7).
10.3.2 Setting the Heater break alarm (HBA) set value

Description of function

Heater break alarm (HBA)

Heater break alarm (HBA) can only be used with time-proportional control output (relay or voltage pulse output).

The Heater break alarm (HBA) function monitors the current flowing through the load by a dedicated current transformer (CT), then compares the measured value with the Heater break alarm (HBA) set values, and detects a fault in the heating circuit.

The Heater break alarm (HBA) function is activated for the following cases:

1. **Low or No current flow (Heater break, malfunction of the control device, etc.):**

 When the control output is ON and the CT input value is equal to or less than the heater break determination point for the preset number of consecutive sampling cycles, an alarm is activated.

2. **Over current or short-circuit:**

 When the control output is OFF and the CT input value is equal to or greater than the heater break determination point for the preset number of consecutive sampling cycles, an alarm is activated.

Parameter setting

Heater break alarm 1 (HBA1) and 2 (HBA2) set value

[Parameter setting mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBA1</td>
<td>0.0 to 100.0 A (0.0: HBA function OFF)</td>
<td>0.0</td>
</tr>
<tr>
<td>HBA2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Set the HBA set value to approximately 85% of the maximum reading of the CT input.
- Set the HBA set value to a slightly smaller value to prevent a false alarm if the power supply becomes unstable.
- When more than one heater is connected in parallel, the HBA set value may need to be increased to detect a single heater failure.

To show the “Heater break alarm 1 (HBA1) set value” and “Heater break alarm 2 (HBA2) set value,” specify “with current transformer (CT),” which is an optional function.
Setting procedure

Heater break alarm (HBA) set value can be set in the Parameter setting mode.

To verify the monitor value of the current transformer (CT), go to the Monitor display mode.
10.3.3 Changing the current transformer (CT) type

Set the number of turns (ratio) in the Current transformer (CT) for Heater break alarm (HBA).

- **Parameter setting**
 - **CT1 and 2 ratio**
 - [Initial setting mode: \(\text{Cod} \ 1045 \)]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTr1</td>
<td>1 to 1000</td>
<td></td>
</tr>
<tr>
<td>CTr2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- When CTL-6-P-N is specified at the time or ordering: 800
- When CTL-12-S56-10L-N is specified at the time or ordering: 1000

- To show the “CT1 ratio” and “CT2 ratio,” specify “with current transformer (CT),” which is an optional function.

- To show the “CT1 ratio” and “CT2 ratio,” enter the Expanded display mode by setting the “Display mode selection” at \(\text{Cod} \ 0003 \) in the Initial setting mode.

- **Setting procedure**
 - CT ratio can be set at \(\text{Cod} \ 1045 \) in the Initial setting mode.

Procedure to enter the Initial setting mode

Monitor display mode PV/SV monitor

Parameter setting mode Alarm 1 set value

Set data lock

Initial setting mode Initial setting code

Display mode selection

Continued on the next page.
Continued from the previous page.

Initial setting mode
Initial setting code

- Next parameter is displayed.
- Set the “Display mode selection” at Cod 0003 in the Initial setting mode to “0: Standard display mode.”
- Press the key for 2 seconds or more while pressing the key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
10.3.4 Preventing Heater break alarm (HBA) from turning on due to a transient abnormal input

If alarm should not be generated in case the Heater break alarm (HBA) condition is shorter than the set time, HBA determination time is used.

Description of function

- **HBA determination time**
 This is a function to allow the Heater break alarm (HBA) to turn on if the Heater break alarm (HBA) ON condition continues beyond the set time.

![Diagram of HBA state and HBA ON state with HBA determination time](image)

Parameter setting

- **HBA determination time**

 [Initial setting mode: Cod 1045]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBT</td>
<td>0 to 255 seconds</td>
<td>3</td>
</tr>
</tbody>
</table>

- To show the “HBA determination time,” specify “with current transformer (CT),” which is an optional function.
- To show the “HBA determination time,” enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.
Setting procedure

HBA determination time can be set at \(Cod \ 1045 \) in the Initial setting mode.

Procedure to enter the Initial setting mode

1. **Monitor display mode**
 - PV/SV monitor
 - [Set] key, press the [Up] key for 2 seconds or more

2. **Parameter setting mode**
 - Alarm 1 set value
 - [Set] key, press the [Up] key repeatedly till \(LCP \) appears

3. **Display mode selection**
 - Set mode display
 - [Set] key
 - [Set] key
 - Set “1: Expanded display mode”

4. **Initial setting mode**
 - [Set] key
 - [Set] key
 - 3 to 5 times
 - Set HBA determination time

5. **Set data lock**
 - [Set] key
 - 3 times
 - 2 seconds or more
 - Press the [Set] key repeatedly for 2 seconds or more while pressing the [Up] key.

Procedure

- Next parameter is displayed.
- Set the “Display mode selection” at \(Cod \ 0003 \) in the Initial setting mode to “0: Standard display mode.”
- Press the [Up] key for 2 seconds or more while pressing the [Set] key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
10.3.5 Keeping the Heater break alarm (HBA) state (Interlock function)

HBA interlock function is used to maintain the Heater break alarm (HBA) state. Once the Heater break alarm (HBA) condition is reached, the Heater break alarm (HBA) condition is held even if the alarm ON condition is lost.

Parameter setting

- **HBA1 and 2 interlock**

 [Initial setting mode: *Cod 1045*]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIL1</td>
<td>oFF: Unused</td>
<td>oFF</td>
</tr>
<tr>
<td>HIL2</td>
<td>on: Used</td>
<td></td>
</tr>
</tbody>
</table>

To show the “HBA1 interlock” and “HBA2 interlock,” specify “with current transformer (CT),” which is an optional function.

To show the “HBA1 interlock” and “HBA2 interlock,” enter the Expanded display mode by setting the “Display mode selection” at *Cod 0003* in the Initial setting mode.

Setting procedure

HBA interlock can be set at *Cod 1045* in the Initial setting mode.

Procedure to enter the Initial setting mode

- Monitor display mode PV/SV monitor
- **2 seconds or more**
- While pressing the key, press the key for 2 seconds or more
- Initial setting mode
- **3 times**
- **3 to 5 times**

Continued on the next page.
10.3.6 Releasing Heater break alarm (HBA) state (Interlock release)

Procedure to release the Heater break alarm (HBA) interlock state is the same as the Alarm interlock release. Heater break alarm (HBA) state cannot be released by interlock release operation as long as the Heater break alarm (HBA) ON condition remains.

For the procedure to release the interlock, refer to 10.1.6 Releasing the alarm state (Interlock release) (P. 10-21).
10.4 Keeping the Alarm State in STOP Mode

Both Alarm action and Heater break alarm (HBA) action can continue the action in control stop (STOP) state. Setting can be made at “Action selection at STOP mode.”

Heater break alarm (HBA) is an optional function.

Parameter setting

- Action selection at STOP mode
 (Initial setting mode: \textcolor{red}{Cod} 1030)

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
</table>
| S5 | 0: Alarm is cleared at STOP
| | 1: Alarm remains on at STOP
| | SV display unit
| | Alarm action
| | Heater break alarm (HBA) action
| | 0 (fixed) [Do not change this one] |

To show the “Action selection at STOP mode,” enter the Expanded display mode by setting the “Display mode selection” at \textcolor{red}{Cod} 0003 in the Initial setting mode.

Setting procedure

Action selection at STOP mode can be set at \textcolor{red}{Cod} 1030 in the Initial setting mode.

Procedure to enter the Initial setting mode

1. Monitor display mode
 - PV/SV monitor
 - Press the SET key repeatedly until LCK appears

2. Parameter setting mode
 - Alarm 1 set value
 - Another parameter may be displayed depending on the specification
 - Set data lock
 - While pressing the SET key repeatedly, press the SET key for 2 seconds or more

3. Initial setting mode
 - Initial setting code
 - Set “1”: Expanded display mode

Continued on the next page.
Continued from the previous page.

- Next parameter is displayed.
- Set the “Display mode selection” at Cod 0003 in the Initial setting mode to “0: Standard display mode.”
- Press the [Set] key for 2 seconds or more while pressing the [Set] key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
10.5 Checking Alarm ON State

The alarm ON state can be checked with the ALM lamp or on the Comprehensive alarm state screen in the Monitor display mode.

■ Display contents
- ALM lamp
 When in Alarm ON condition, the ALM lamp lights. However, because the controller has only one lamp, the lamp is lit as an OR of Alarm 1, Alarm 2, Heater break alarm 1, and Heater break alarm 2.

- Comprehensive alarm state
 [Monitor display mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
</table>
| \(AL \) | 0: Alarm OFF or No alarm
 1: Alarm ON
 0000: SV display unit
 Alarm 1
 Alarm 2
 Heater break alarm 1 (HBA1)
 Heater break alarm 2 (HBA2) |

To show the “Comprehensive alarm state,” set a value other than “None” at Cod 0000 in the Initial setting mode for “Alarm 1 type” or “Alarm 2 type.” You also need to set a value other than “0.0” for “Heater break alarm 1 (HBA1) set value” or “Heater break alarm 2 (HBA2) set value” in the Parameter setting mode.

Heater break alarm (HBA) is an optional function.
Display operation

Comprehensive alarm state can be found in the Monitor display mode.

![Diagram showing PV/SV monitor and comprehensive alarm state]
This chapter describes control related functions, setting contents and setting procedure based on the key words related to controls.

11.1 Running/Stopping control (RUN/STOP transfer) 11-2
11.2 Changing Control Action ... 11-4
11.3 Setting PID Values Automatically (Autotuning) 11-8
11.4 Setting PID Values Automatically (Startup tuning) 11-10
11.5 Setting PID Values Manually ... 11-14
11.6 Controlling with ON/OFF Action .. 11-19
11.7 Controlling with Heat/Cool Action .. 11-24
11.8 Increasing Control Response/Suppressing Overshoot (Fine tuning) .. 11-29
11. CONTROL FUNCTION

11.1 Running/Stopping control (RUN/STOP transfer)

In the Monitor display mode, control start (RUN) and stop (STOP) can be switched between each other. The factory set value is RUN. As soon as the controller is powered on, control is started. The RUN/STOP transfer can be made by the key operation or communication (optional function).

- **State of this instrument when set to STOP mode**

<table>
<thead>
<tr>
<th>STOP display</th>
<th>PV/SV monitor screen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays the STOP symbol “STOP” on the SV display or on the PV display. According to the setting contents of “STOP display selection” in the Initial setting code. Setting range: 0: STOP on PV display 1: STOP on SV display [Factory set value]</td>
<td></td>
</tr>
</tbody>
</table>

- **Other than the PV/SV monitor screen**

The switching screen is displayed for 1 second when the mode is switched by key operations.

<table>
<thead>
<tr>
<th>Control output</th>
<th>Relay contact output, Voltage pulse output: Output OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current output: Output of −5 %</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alarm action</th>
<th>According to the setting contents of “Action selection at STOP mode” in the Initial setting code. Setting range: 0000: Both Alarm action and Heater break alarm (HBA) action are stopped. [Factory set value] 0001: Alarm action is continued and Heater break alarm (HBA) action is stopped. 0010: Alarm action is stopped and Heater break alarm (HBA) action is continued. 0011: Both Alarm action and Heater break alarm (HBA) action are continued.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autotuning, Startup tuning</td>
<td>AT canceled (PID constants are not updated.)</td>
</tr>
</tbody>
</table>

- **State of this instrument when set to RUN mode**

If the instrument is transferred to RUN mode from STOP mode, it performs the same operation (control RUN, Alarm determination start-up) as the power-on.

- **For STOP display selection**, refer to 9.2 Changing the Display Position of STOP during the Control Stop (P. 9-4).

- **For Action selection at STOP mode**, refer to 10.4 Keeping the Alarm State in STOP Mode (P. 10-46).

- **State of this instrument when set to RUN mode**

If the instrument is transferred to RUN mode from STOP mode, it performs the same operation (control RUN, Alarm determination start-up) as the power-on.

- **For RUN/STOP transfer by Communication (optional function)**, refer to 12. COMMUNICATION FUNCTION (P. 12-1).
Setting procedure

Pressing the \(\text{R/S} \) key for one second in the Monitor display mode switches the mode from RUN to STOP or from STOP to RUN.

PV/SV monitor screen

- Monitor display mode
 - PV/SV monitor [RUN state]
 - PV/SV monitor [STOP state]
- Press and hold the \(\text{R/S} \) key for 1 second.
- STOP display
 - (Display position can be adjusted)

Other than the PV/SV monitor screen

- [Example] Switching from RUN to STOP in the Comprehensive alarm state screen
- [Example] Switching from STOP to RUN in the Comprehensive alarm state screen

- Monitor display mode
 - Comprehensive alarm state [RUN state]
- Press and hold the \(\text{R/S} \) key for 1 second.
- Display for 1 second
- Automatically

- Monitor display mode
 - Comprehensive alarm state [STOP state]

Operation and screens are similar for other monitor mode displays (Current transformer input value monitor \(\text{R/S} \) Manipulated output value).
11.2 Changing Control Action

Refer to the following 6 types of control action:
- PID control (direct action)
- PID control (reverse action)
- ON/OFF action
- Heat/Cool PID control (water cooling)
- Heat/Cool PID control (air cooling)
- Heat/Cool PID control (cooling linear type)

■ PID control (direct action)

The Manipulated output value (MV) increases as the Measured value (PV) increases. This action is used generally for cooling control.

■ PID control (reverse action)

The Manipulated output value (MV) decreases as the Measured value (PV) increases. This action is used generally for heating control.

■ ON/OFF action

ON/OFF control is possible when the Proportional band [heat-side] is set to 0. In ON/OFF control with Reverse action, when the Measured value (PV) is smaller than the Set value (SV), the Manipulated output (MV) is 100 % or ON. When the PV is higher than the SV, the MV is 0 % or OFF. Differential gap setting prevents control output from repeating ON and OFF too frequently.

For ON/OFF action, refer to 11.6 Controlling with ON/OFF Action (P. 11-19).
Heat/Cool PID control

In Heat/Cool control, only one controller enables heating and cooling control.

Water cooling/Air cooling: The algorithm assuming plastic molding machine Heat/Cool control is employed. Even in equipment provided with a cooling mechanism having nonlinear characteristics, it responds quickly to attain the characteristic responding to the set value with small overshooting.

Cooling linear type: The algorithm assuming applications without nonlinear cooling capability is employed.

For Heat/Cool PID control, refer to 11.7 Controlling with Heat/Cool Action (P. 11-24).
Parameter setting

Control action

[Initial setting mode: Cod 1051]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
</table>
| Ue | 0: PID control
1: Heat/Cool PID control | When control action is specified at the time of ordering, the ordered code for control action is the factory setting.
If control action is not specified, factory setting depends on the specification (with or without outputs).
For details, refer to 1.3 Model Code (P. 1-4). |

To show the “Control action,” enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.

Direct/Reverse action

[Initial setting mode: Cod 1051]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
</table>
| Uo S | 0: PID control: Direct action
1: PID control: Reverse action | When control action is specified at the time of ordering, the ordered code for control action is the factory setting.
If Control action is not specified: 1 |

To show the “Direct/Reverse action,” enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.

Cool action

[Initial setting mode: Cod 1051]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
</table>
| Uo Sc | 0: Heat/Cool PID control: Air cooling (for Extruder)
1: Heat/Cool PID control: Water cooling (for Extruder)
2: Heat/Cool PID control: Cooling linear type | When control action is specified at the time of ordering, the ordered code for control action is the factory setting.*
If Control action is not specified: 0 |

* If control action code is “G,” this parameter is “2.”
If control action code is “A,” this parameter is “0.”
If control action code is “W,” this parameter is “1.”

To show the “Cool action,” enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.

To show the “Cool action,” configure the instrument to “Heat/Cool PID control” at Cod 1051 in the Initial setting mode to “Control action.”
Setting procedure

Control action, Direct/Reverse action and Cool action can be set at `Cod 0051` in the Initial setting mode.

Procedure to enter the Initial setting mode

1. **Monitor display mode**
 - PV/SV monitor

2. **Parameter setting mode**
 - Alarm 1 set value

3. **Set data lock**
 - Press the soft key repeatedly till `LCK` appears

4. **Display mode selection**
 - Set “1: Expanded display mode”

5. **Control action**
 - To set “0: PID control”

6. **Direct/Reverse action**
 - To set “1: Heat/Cool PID control”

7. **Cool action**
 - Set “1: Heat/Cool PID control”

- Next parameter is displayed.
- Set the “Display mode selection” at `Cod 0003` in the Initial setting mode to “0: Standard display mode.”
- Press the `R/S` key for 2 seconds or more while pressing the `Set` key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
11.3 Setting PID Values Automatically (Autotuning)

The Autotuning (AT) automatically measures, computes and sets the optimum PID values. The Autotuning (AT) can be used for PID control (Direct action/Reverse action) and Heat/Cool PID control.

Description of function

- **Parameters computed by Autotuning (AT)**
 - Proportional band (P)
 - Integral time (I)
 - Derivative time (D)
 - Proportional band [cool-side] (Only for Heat/Cool PID control)
 - Control loop break alarm (LBA) time (The LBA time is automatically set to twice the value of the Integral time)

- **Caution for using the Autotuning (AT)**
 - When a temperature change (UP and/or Down) is 1 °C or less per minute during Autotuning (AT), Autotuning (AT) may not be finished normally. In that case, adjust the PID values manually. Manual setting of PID values may also be necessary if the set value is around the ambient temperature or is close to the maximum temperature achieved by the load.
 - If the manipulated output value may be limited by the Output limiter setting, the optimum PID values may not be calculated by Autotuning (AT).

For the manual setting of PID values, refer to [11.5 Setting PID Values Manually](#) (P. 11-14).

- **Requirements for Autotuning (AT) start**
 Start the Autotuning (AT) when all following conditions are satisfied:
 To start Autotuning (AT), go to Parameter setting mode.

| Operation state | RUN
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PID control</td>
<td></td>
</tr>
<tr>
<td>Parameter setting</td>
<td>Output limiter high ≥ 0.1 %</td>
</tr>
<tr>
<td></td>
<td>Output limiter low ≤ 99.9 %</td>
</tr>
<tr>
<td>Input value state</td>
<td>The Measured value (PV) is not underscale or over-scale.</td>
</tr>
</tbody>
</table>

- **Requirements for Autotuning (AT) cancellation**
 If the Autotuning (AT) is canceled according to any of the following conditions, the controller immediately changes to PID control. The PID values will be the same as before Autotuning (AT) was activated.

<table>
<thead>
<tr>
<th>Operation state</th>
<th>When the RUN/STOP mode is changed to the STOP mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When the PID/AT transfer is changed to the PID control.</td>
</tr>
<tr>
<td>Parameter changing</td>
<td>When the temperature Set value (SV) is changed.</td>
</tr>
<tr>
<td></td>
<td>When the PV bias or the PV digital filter is changed.</td>
</tr>
<tr>
<td></td>
<td>When the Output limiter high or Output limiter low is changed.</td>
</tr>
<tr>
<td>Input value state</td>
<td>When the Measured value (PV) goes to underscale or over-scale.</td>
</tr>
<tr>
<td>AT execution time</td>
<td>When the Autotuning (AT) does not end in 9 hours after Autotuning (AT) started.</td>
</tr>
<tr>
<td>Power failure</td>
<td>When the power failure of more than 20 ms occurs.</td>
</tr>
<tr>
<td>Instrument error</td>
<td>When the instrument is in the FAIL state.</td>
</tr>
</tbody>
</table>
Parameter setting

- **Autotuning (AT)**

 [Parameter setting mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFU</td>
<td>0: PID control</td>
<td>1: Start Autotuning (AT)</td>
</tr>
</tbody>
</table>

Setting procedure

- **Start the Autotuning (AT)**

 PID/AT transfer can be set in the Parameter setting mode. Before start AT, refer to “[Requirements for Autotuning (AT) start (P. 11-8).” Make sure that all required conditions to start AT are satisfied.

During Autotuning (AT), the AT lamp blinks.

When the Autotuning (AT) is finished, the control will automatically return to “0: PID control” and the AT lamp turns off.

For execution of Autotuning (AT), refer to 5.6 Tuning the PID Parameters (Execution of AT) (P. 5-14).
11. CONTROL FUNCTION

11.4 Setting PID Values Automatically (Startup tuning)

Startup tuning (ST) is a function which automatically computes and sets the PID values (Proportional band: heat-side only) from the response characteristics of the controlled system at power ON, transfer from STOP to RUN, and Set value (SV) change.

Description of function

- As simple autotuning, the PID values can be found in a short time without disturbing controllability for controlled systems with slow response at power ON.
- For controlled systems which require different PID values for each temperature setting, the PID values can be found for each Set value (SV) change.

![Diagram of Startup tuning](image)

- The setting items related to Startup tuning (ST) are shown below. Set them according to the application used.

<table>
<thead>
<tr>
<th>Setting item</th>
<th>Details</th>
<th>Setting mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start condition</td>
<td>0 (Factory set value) When the power is turned on, operation is changed from STOP to RUN, or the Set value (SV) is changed.</td>
<td>Initial setting mode</td>
</tr>
<tr>
<td></td>
<td>1 When the power is turned on or operation is changed from STOP to RUN.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 When the Set value (SV) is changed.</td>
<td></td>
</tr>
<tr>
<td>Execution method</td>
<td>0 (Factory set value) ST unused</td>
<td>Parameter setting mode</td>
</tr>
<tr>
<td></td>
<td>1 Execute once</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Execute always</td>
<td></td>
</tr>
</tbody>
</table>

- When the Startup tuning (ST) function is activated in Heat/Cool PID control, only heat-side PID values are calculated and changed (the Proportional band [cool-side] is not calculated).

Caution for using the Startup tuning (ST)

- For Startup tuning (ST) at power ON or transfer from STOP to RUN, always set the heater power to ON simultaneously with the start of tuning or before the start of tuning.
- Start Startup tuning (ST) in the state in which the temperature differential of the Measured value (PV) and Set value (SV) at the start of Startup tuning (ST) is twice the Proportional band, or greater.
- If in Heat/Cool PID control, start activating the Startup tuning (ST) function under the condition of “Set value (SV) > Measured value (PV).” Only the PID values on the heat-side are automatically calculated but no PID values on the cool-side are changed. Execute the Autotuning (AT) function to the PID valued on the cool-side.
- When the manipulated output value may be limited by the Output limiter setting, the optimum PID values may not be calculated by Startup tuning (ST).
● Requirements for Startup tuning (ST) start

Start the Startup tuning (ST) when all following conditions are satisfied:

<table>
<thead>
<tr>
<th>Operation state</th>
<th>PID control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter setting</td>
<td>Startup tuning (ST) is set to ON (Execute once, Execute always)</td>
</tr>
<tr>
<td></td>
<td>Output limiter high ≥ 0.1 %, Output limiter low ≤ 99.9 %</td>
</tr>
<tr>
<td></td>
<td>[Heat/Cool PID control type: Output limiter high (heat-side) ≥ 0.1 %]</td>
</tr>
<tr>
<td>Input value state</td>
<td>The Measured value (PV) is not underscale or over-scale.</td>
</tr>
<tr>
<td></td>
<td>At ST at Set value (SV) change, the Measured value (PV) shall be stabilized.</td>
</tr>
<tr>
<td>Output value state</td>
<td>At startup, output is changed and saturated at the Output limiter high or the Output limiter low [Heat/Cool PID control type: Output limiter high (heat-side)].</td>
</tr>
</tbody>
</table>

● Requirements for Startup tuning (ST) cancellation

If the Startup tuning (ST) is canceled according to any of the following conditions, the controller immediately changes to PID control. The PID values will be the same as before Startup tuning (ST) was activated.

<table>
<thead>
<tr>
<th>Operation state</th>
<th>When the Autotuning (AT) is activated.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter changing</td>
<td>When the RUN/STOP mode is changed to the STOP mode.</td>
</tr>
<tr>
<td></td>
<td>When Startup tuning (ST) is set to “0 (ST unused).”</td>
</tr>
<tr>
<td></td>
<td>When the PV bias or the PV digital filter is changed.</td>
</tr>
<tr>
<td></td>
<td>When the Output limiter value is changed.</td>
</tr>
<tr>
<td>Input value state</td>
<td>When the Measured value (PV) goes to underscale or over-scale.</td>
</tr>
<tr>
<td>Startup tuning (ST) execution time</td>
<td>When the Startup tuning (ST) does not end in hundred minutes after Startup tuning (ST) started.</td>
</tr>
<tr>
<td>Power failure</td>
<td>When the power failure of more than 20 ms occurs.</td>
</tr>
<tr>
<td>Instrument error</td>
<td>When the instrument is in the FAIL state.</td>
</tr>
</tbody>
</table>
Parameter setting

Startup tuning (ST)

[Parameter setting mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
</table>
| STU | 0: ST unused
1: Execute once *
2: Execute always
* When the Startup tuning (ST) is finished, the control will automatically return to “0: ST unused.” | 0 |

ST start condition

[Initial setting mode: Cod 1052]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
</table>
| STS | 0: Activate the ST function when the power is turned on; when transferred
from STOP to RUN; or when the Set value (SV) is changed.
1: Activate the ST function when the power is turned on; or when transferred
from STOP to RUN.
2: Activate the ST function when the Set value (SV) is changed. | 0 |

To show “ST start condition,” enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.

Setting procedure

Set the ST start condition

ST start condition can be set at Cod 1052 in the Initial setting mode.

Procedure to enter the Initial setting mode

1. While pressing the key, press the key for 2 seconds or more.
2. Press the SET key repeatedly until LCK appears.
3. While pressing the key, press the key for 2 seconds or more.
4. Press the SET key 3 times.
5. Press the SET key 4 to 7 times.

Continued on the next page.
11. CONTROL FUNCTION

Set the Startup tuning (ST)

Startup tuning (ST) can be set in the Parameter setting mode.

Start the Startup tuning (ST)

Before start ST, refer to “Requirements for Startup tuning (AT) start (P. 11-11).” Make sure that all required conditions to start ST are satisfied.

Startup tuning can be started in the following manner. (started in the manner that satisfies the starting condition)

- Power off the controller once and power on again.
- Stop the control once (STOP) and start the control again (RUN).
- Change the Set value (SV).

The AT lamp lights during the Startup tuning (ST).

After completion of the Startup tuning (ST), the AT lamp goes off.

When the Startup tuning setting is “1: Execute once,” the setting will go back to “0: ST unused.”
11.5 Setting PID Values Manually

To perform PID control, PID parameters shown below need to be set up. These PID parameters can be automatically set using Autotuning (AT) or Startup tuning (ST). Manual adjustment is also available.

- Proportional band (P)
- Integral time (I)
- Derivative time (D)

Also set Anti-reset windup (ARW), if necessary.

- For Autotuning (AT) function, refer to 11.3 Setting PID Values Automatically (Autotuning) (P. 11-8). For Startup tuning (ST) function, refer to 11.4 Setting PID Values Automatically (Startup tuning) (P. 11-10).

Description of function

Critical parameters of PID control such as Proportional action (Proportional band: P), Integral action (Integral time: I), and Derivative action (Derivative time: D) are explained below.

Note that this explanation is based on the reverse action (heating control). With the direct action (cooling control), the output increases as the measured value increases.

- Proportional action

In the ON/OFF control action, the manipulated output is turned on and off repeatedly, resulting in oscillatory control.

To eliminate this oscillation, control is performed by producing Manipulated output value (MV) proportional to the deviation between the Set value (SV) and the Measured value (PV).

Technically a zone called “Proportional band” is established around the Set value (SV) and when the Measured value (PV) enters the proportional band, the Manipulated output value (MV) is gradually reduced.

The measured value (PV) stabilizes within the Proportional band at the equilibrium point, but in many cases the stabilized temperature does not match the Set value (SV).

This deviation between the Set value (SV) and the stabilized temperature is called “Offset.” With a narrower proportional band the control result becomes closer to that of the ON/OFF control (oscillatory).

With a wider proportional band the output is gradually reduced to stabilize quicker, however, often with a larger offset.

- For ON/OFF action, refer to 11.6 Controlling with ON/OFF Action (P. 11-19).
● Integral action
Proportional action provides more stable control than ON/OFF control, but causes offset. This offset can be automatically corrected by Integral action. As long as deviation exists between the Set value (SV) and the Measured value (PV), the Manipulated output value (MV) is added according to the size of the deviation until no deviation exists. The strength of the Integral action is expressed in the Integral time. The Integral time is the time till the Manipulated output value (MV) by the Integral action gets equal to that by the Proportional action. The shorter the Integral time, the stronger the integral effect is, and the longer the weaker.

● Derivative action
This action produces Manipulated output value (MV) proportional to the changing rate of the deviation between the Set value (SV) and the Measured value (PV) to prevent the deviation from becoming larger. The strength of the Derivative action is expressed by the derivative time, which is the time till the Manipulated output (MV) by the Proportional action becomes the same as that by the Derivative action. The longer the Derivative time is, the stronger the Derivative effect is, and the shorter the weaker. The Derivative effect, if set too strong, produces large Manipulated output (MV) against a small change of the Measured value (PV), thus causing hunting and resulting in unstable control.
11. CONTROL FUNCTION

Outline of effect of PID
The following figure shows control behaviors under various control actions; ON/OFF control, proportional control (P), Proportional + Integral action (PI action), and Proportional + Integral + Derivative actions (PID control).

Adjusting PID parameters (Applications controlled with PID control)
In some applications PID values calculated and obtained through Autotuning (AT) and Startup tuning (ST) may not be appropriate. In such a case the PID values need to be adjusted manually. Attempt this adjustment referring to the following.

The sample here shows a general tendency. Control results depend on the controlled object and combinations of control constants.

<table>
<thead>
<tr>
<th>Made larger (wider, longer)</th>
<th>Made smaller (narrower, shorter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportional band (P) adjusted</td>
<td>Overshoot is suppressed, but it takes time until the temperature stabilizes.</td>
</tr>
<tr>
<td>Integral time (I) adjusted</td>
<td>Overshoot, undershoot and hunting are suppressed. Setting the value too long may need longer time till the Set value (SV) is reached.</td>
</tr>
<tr>
<td>Derivative time (D) adjusted</td>
<td>Suppresses hunting (oscillation). Setting the value too long may cause large overshoot and take time till the Set value is reached.</td>
</tr>
</tbody>
</table>
Parameter setting

Proportional band [heat-side]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0 (0.0) to Input span (Unit: °C [°F])</td>
<td>30 or 30.0</td>
</tr>
<tr>
<td></td>
<td>For a scale range with a decimal point, when the input span exceeds the display limit, the maximum value is 999.9. Varies with the setting of the Decimal point position. 0 (0.0): ON/OFF action</td>
<td></td>
</tr>
</tbody>
</table>

Integral time

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0 to 3600 seconds</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>(0: PD action)</td>
<td></td>
</tr>
</tbody>
</table>

Derivative time

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>0 to 3600 seconds</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>(0: PI action)</td>
<td></td>
</tr>
</tbody>
</table>

Anti-reset windup (ARW)

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>0 to 100 % of Proportional band [heat-side]</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(0: Integral action is always OFF)</td>
<td></td>
</tr>
</tbody>
</table>

Proportional band [cool-side]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_c</td>
<td>1 to 1000 % of Proportional band [heat-side]</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(ON/OFF action of cool-side only is not possible.)</td>
<td></td>
</tr>
</tbody>
</table>

To show the “Proportional band [cool-side],” specify “Heat/Cool PID control” at the time of ordering or configure the instrument to “Heat/Cool PID control” at Cod 1051 in the Initial setting mode to “Control action.”
Setting procedure

Proportional band [heat-side], Integral time, Derivative time, Anti-reset windup (ARW), and Proportional band [cool-side] can be set in the Parameter setting mode.

- **Monitor display mode**
 - PV/SV monitor

- **Parameter setting mode**
 - Alarm 1 set value

- **Proportional band [heat-side]**
 - Press the SET key repeatedly till \(P \) appears
 - Set Proportional band [heat-side]

- **Integral time**
 - Set Integral time

- **Derivative time**
 - Set Derivative time

- **Anti-reset windup (ARW)**
 - Set Anti-reset windup (ARW)

- **Proportional band [cool-side]**
 - Set Proportional band [cool-side]

- **Next parameter is displayed.**
- **Press and hold the \(\text{SET} \) key for 2 seconds or more to return to the PV/SV monitor screen.**
11.6 Controlling with ON/OFF Action

In ON/OFF control, the Manipulated output value (MV) is turned on or off depending on the Measured value (PV) whether it is above or below the Set value (SV).

Description of function

When the Measured value (PV) is above the Set value (SV), the Manipulated output value (MV) is turned OFF, and when the Measured value (PV) is below the Set value (SV), the Manipulated output value (MV) is turned ON. **To use the ON/OFF control, set the Proportional band [heat-side] to “0.”**

In the ON/OFF control the output is turned on and off around the Set value (SV) and the output may be turned on and off too frequently for a small change of temperature. This is called “chattering” and may reduce the life of the output relay. To prevent this, ON/OFF differential gap should be properly set.

This explanation applies to “Reverse action” (heating control).

The value of the ON/OFF action differential gap is a deviation from the Set value (SV). This gap can be set individually above and below the Set value (SV). For example, in case of a Reverse action (heating control), assuming that the Set value (SV) is 100 °C with a ON/OFF action differential gap (upper) of 5 °C, the Manipulated output value (MV) turns off at 105 °C.

Cooling control with ON/OFF action

Cooling control (direct action) can be conducted as follows.
- Select “0: PID control” in the selection of Control action in the Initial setting mode “ Cod lDs l.”
- Select “0: PID control: Direct action” in the “Direct/Reverse action”.
- Set “0” at Proportional band [heat-side] to change the control action to the ON/OFF action for cooling control (direct action).

The action is the same as above, but the ON/OFF position of the Manipulated output value (MV) becomes opposite. The ON/OFF action differential gap can be set similarly.
Heat/Cool control with ON/OFF action

Select “1: Heat/Cool PID control” at the “Control [501] (Control action)” in the Initial setting mode. Then, select one from “0: Heat/Cool PID control: Water cooling (for Extruder),” “1: Heat/Cool PID control: Air cooling (for Extruder)” or “2: Heat/Cool PID control: Cooling linear type” for setting the Cool action. After the control action has been set up, set zero to the Proportional band [heat-side] to start.

Overlap/Deadband = 0

- **Heat-side output**
 - ON
 - OFF
 - Low
 - High
 - ON/OFF action differential gap (lower)
 - ON/OFF action differential gap (upper)
 - Set value (SV)

- **Cool-side output**
 - OFF
 - ON
 - Low
 - High
 - ON/OFF action differential gap (lower)
 - ON/OFF action differential gap (upper)
 - Set value (SV)

Overlap/Deadband > 0

- **Heat-side output**
 - ON
 - OFF
 - Low
 - High
 - ON/OFF action differential gap (lower)
 - ON/OFF action differential gap (upper)
 - Set value (SV)
 - Deadband

- **Cool-side output**
 - OFF
 - ON
 - Low
 - High
 - ON/OFF action differential gap (lower)
 - ON/OFF action differential gap (upper)

Overlap/Deadband < 0

- **Heat-side output**
 - ON
 - OFF
 - Low
 - High
 - ON/OFF action differential gap (lower)
 - ON/OFF action differential gap (upper)
 - Set value (SV)
 - Overlap

- **Cool-side output**
 - OFF
 - ON
 - Low
 - High
 - ON/OFF action differential gap (lower)
 - ON/OFF action differential gap (upper)
Parameter setting

Proportional band [heat-side]

[Parameter setting mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0 (0.0) to Input span (Unit: °C [°F])</td>
<td>30 or 30.0</td>
</tr>
<tr>
<td></td>
<td>For a scale range with a decimal point, when the input span exceeds the display limit, the maximum value is 999.9. Varies with the setting of the Decimal point position. 0 (0.0): ON/OFF action</td>
<td></td>
</tr>
</tbody>
</table>

ON/OFF action differential gap (upper)
[Initial setting mode: $\text{Cod } 1051$]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Io\text{HH}$</td>
<td>0 to 9999 or 0.0 to 999.9 (Unit: °C [°F])</td>
<td>1 or 1.0</td>
</tr>
<tr>
<td></td>
<td>Varies with the setting of the Decimal point position.</td>
<td></td>
</tr>
</tbody>
</table>

To show the “ON/OFF action differential gap (upper),” enter the Expanded display mode by setting the “Display mode selection” at $\text{Cod } 0003$ in the Initial setting mode.

ON/OFF action differential gap (lower)
[Initial setting mode: $\text{Cod } 1051$]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Io\text{HL}$</td>
<td>0 to 9999 or 0.0 to 999.9 (Unit: °C [°F])</td>
<td>1 or 1.0</td>
</tr>
<tr>
<td></td>
<td>Varies with the setting of the Decimal point position.</td>
<td></td>
</tr>
</tbody>
</table>

To show the “ON/OFF action differential gap (lower),” enter the Expanded display mode by setting the “Display mode selection” at $\text{Cod } 0003$ in the Initial setting mode.
Setting procedure

- **Set the ON/OFF action differential gap**

ON/OFF action differential gap can be set at \textit{Cod} 1051 in the Initial setting mode.

Procedure to enter the Initial setting mode

<table>
<thead>
<tr>
<th>Monitor display mode</th>
<th>Parameter setting mode</th>
<th>Set data lock</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV/SV monitor</td>
<td>Alarm 1 set value</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>AL 1</td>
<td>LCK 1000</td>
</tr>
</tbody>
</table>

- While pressing the \textit{SET} key, press the \textit{\(\uparrow\)} key for 2 seconds or more.
- Another parameter may be displayed depending on the specification.
- Press the SET key repeatedly till LCK appears.
- Set “1” (Initial setting mode display).

Initial setting code

<table>
<thead>
<tr>
<th>Initial setting code</th>
<th>ON/OFF action differential gap (upper)</th>
<th>ON/OFF action differential gap (lower)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>Cod</td>
<td>dSEL</td>
</tr>
<tr>
<td>1051</td>
<td>oHH</td>
<td>oHL</td>
</tr>
</tbody>
</table>

- Set ON/OFF action differential gap (upper).
- Set ON/OFF action differential gap (lower).

Setting End

- Next parameter is displayed.
- Set the “Display mode selection” at \textit{Cod} 0003 in the Initial setting mode to “0: Standard display mode.”
- Press the \textit{\(\uparrow\)} key for 2 seconds or more while pressing the \textit{SET} key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
Set the ON/OFF action

To select an ON/OFF control, go to the Parameter setting mode and set the Proportional band [heat-side] to “0.”

Monitor display mode
PV/SV monitor

2 seconds or more

Parameter setting mode
Alarm 1 set value

Another parameter may be displayed depending on the specification

Press the SET key repeatedly till P appears

Set Proportional band [heat-side] to “0”

- Next parameter is displayed.
- Press and hold the SET key for 2 seconds or more to return to the PV/SV monitor screen.
11.7 Controlling with Heat/Cool Action

With Heat/Cool PID control method, heat-side and cool-side can be controlled by a controller. For example, this is effective when cooling control is required in extruder cylinder temperature control.

- **Description of function**
 - **Cool control type**
 The control on the heat-side is the same as the standard PID control. The control on the cool-side can be selected from a few types according to the controlled object.
 - Water cooling/Air cooling: The algorithm assuming plastic molding machine Heat/Cool control is employed. Even in equipment provided with a cooling mechanism having nonlinear characteristics, it responds quickly to attain the characteristic responding to the set value with small overshooting.
 - Cooling linear type: The algorithm assuming applications without nonlinear cooling capability is employed.

- **Overlap/Deadband**
 Heat/Cool PID control has a proportional band individually on each side of the heating and the cooling. With the Set value (SV) as a reference point, setting the Overlap/Deadband below the Set value (SV) [setting on the negative side] generates an overlap of the heating and the cooling proportional bands. Setting this parameter above the Set value (SV) [setting on the positive side] generates a deadband.

- **Parameter setting**
 - **Proportional band [heat-side]**
 [Parameter setting mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0 (0.0) to Input span (Unit: °C [°F])</td>
<td>30 or 30.0</td>
</tr>
<tr>
<td></td>
<td>For a scale range with a decimal point, when the input span exceeds the display limit, the maximum value is 999.9. Varies with the setting of the Decimal point position. 0 (0.0): ON/OFF action</td>
<td></td>
</tr>
</tbody>
</table>

Manipulated output value (MV) Proportional band [heat-side] Proportional band [cool-side]

Manipulated output value (MV1) [heat-side] Manipulated output value (MV2) [cool-side]

OL: Overlap OL DB: Deadband
11. CONTROL FUNCTION

● Integral time

[Parameter setting mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0 to 3600 seconds (0: PD action)</td>
<td>240</td>
</tr>
</tbody>
</table>

● Derivative time

[Parameter setting mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>0 to 3600 seconds (0: PI action)</td>
<td>60</td>
</tr>
</tbody>
</table>

● Anti-reset windup (ARW)

[Parameter setting mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>0 to 100 % of Proportional band [heat-side] (0: Integral action is always OFF)</td>
<td>100</td>
</tr>
</tbody>
</table>

● Proportional band [cool-side]

[Parameter setting mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pc</td>
<td>1 to 1000 % of Proportional band [heat-side] (ON/OFF action of cool-side only is not possible.)</td>
<td>100</td>
</tr>
</tbody>
</table>

To show the “Proportional band [cool-side],” specify “Heat/Cool PID control” at the time of ordering or configure the instrument to “Heat/Cool PID control” at Cod 1051 in the Initial setting mode to “Control action.”

● Overlap/Deadband

[Parameter setting mode]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>db</td>
<td>-10 to +10 or -10.0 to +10.0 (Unit: °C [°F]) Varies with the setting of the Decimal point position.</td>
<td>0 or 0.0</td>
</tr>
</tbody>
</table>

To show the “Overlap/Deadband,” specify “Heat/Cool PID control” at the time of ordering or configure the instrument to “Heat/Cool PID control” at Cod 1051 in the Initial setting mode to “Control action.”
Control action
[Initial setting mode: Cod 105 l]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
</table>
| \(y \) | 0: PID control
 1: Heat/Cool PID control | When control action is specified at the time of ordering, the ordered code for control action is the factory setting. If control action is not specified, factory setting depends on the specification (with or without outputs). For details, refer to 1.3 Model Code (P. 1-4). |

To show the “Control action,” enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.

Cool action
[Initial setting mode: Cod 105 l]

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
</table>
| \(os \) | 0: Heat/Cool PID control: Air cooling (for Extruder)
 1: Heat/Cool PID control: Water cooling (for Extruder)
 2: Heat/Cool PID control: Cooling linear type | When control action is specified at the time of ordering, the ordered code for control action is the factory setting.*
If control action is not specified: 0 |

* If control action code is “G,” this parameter is “2.”
If control action code is “A,” this parameter is “0.”
If control action code is “W,” this parameter is “1.”

To show the “Cool action,” enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.

To show the “Cool action,” configure the instrument to “Heat/Cool PID control” at Cod 105 l in the Initial setting mode to “Control action.”
■ Setting procedure

- Set the Control action to “Heat/Cool PID control”

Control action and Cool action can be set at Cod 1051 in the Initial setting mode.

Procedure to enter the Initial setting mode

- Next parameter is displayed.
- Set the “Display mode selection” at Cod 0003 in the Initial setting mode to “0: Standard display mode.”
- Press the key for 2 seconds or more while pressing the key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
Set the parameters related to Heat/Cool PID control

Proportional band [heat-side], Integral time, Derivative time, Anti-reset windup (ARW), Proportional band [cool-side], and Overlap/Deadband can be set in the Parameter setting mode.

The parameters for Heat/Cool PID control can be calculated with Autotuning (AT) (however, Anti-reset windup and the Overlap/Deadband are excluded). For the autotuning (AT), refer to 11.3 Setting PID Values Automatically (Autotuning) (P. 11-8).
11.8 Increasing Control Response/Suppressing Overshoot (Fine tuning)

Fine tuning is a function to adjust the control response time or the amount of overshoot without changing the PID parameters when a Set value (SV) is changed or when external disturbance occurs. Fine tuning fine-tunes the PID values according to the Fine tuning setting to improve the control response. Once Fine tuning is done, the control action will be different from that performed with the currently set PID values.

■ Description of function

Depending on the Fine tuning setting (−3 to +3), the resultant actions may be as follows.

• Setting a “0” value: Control is not influenced by Fine tuning.
• Setting a positive value (fast response):
 Time to the Set value (SV) is faster, but small overshoot is unavoidable.
• Setting a negative value (slow response):
 Overshoot can be reduced, but time to the Set value (SV) may take longer.

![Diagram showing Faster response and Slower response](image)

■ Parameter setting

- Fine tuning

 [Parameter setting mode] EX

<table>
<thead>
<tr>
<th>Parameter symbol</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTU</td>
<td>−3 to +3 (0: Function OFF)</td>
<td>0</td>
</tr>
</tbody>
</table>

To show the “Fine tuning,” enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.
Setting procedure

Fine tuning can be set in Parameter setting mode.
To show the “Fine tuning,” enter the Expanded display mode by setting the “Display mode selection” at Cod 0003 in the Initial setting mode.

Procedure to enter the Initial setting mode

- **Monitor display mode**
 - PV/SV monitor
 - Press the key for 2 seconds or more

- **Parameter setting mode**
 - Alarm 1 set value
 - While pressing the key, press the key for 2 seconds or more

- **Set data lock**
 - Press the key for 2 seconds or more

- **Initial setting mode**
 - Initial setting code
 - Cod 0000
 - 3 times

- **Display mode selection**
 - Cod 0003
 - dSEL 0001

- **Monitor display mode**
 - PV/SV monitor
 - Press the SET key for 2 seconds or more

- **Parameter setting mode**
 - Alarm 1 set value
 - Another parameter may be displayed depending on the specification

- **Fine tuning**
 - Press the SET key repeatedly till PRV appears
 - Set the Fine tuning

- **Setting End**
 - • Next parameter is displayed.
 - • Press the key for 2 seconds or more while pressing the key to go to the Initial setting mode.
 - • Set the “Display mode selection” at Cod 0003 in the Initial setting mode to “0: Standard display mode.”
 - • Press the key for 2 seconds or more while pressing the key to return to the PV/SV monitor screen.
 - • Set the highest digit of Set data lock to “0: Lock.”
This chapter describes Host communication including connection, setting, protocol and communication data.

12.1 Outline.. 12-2
12.2 Connections ... 12-4
 12.2.1 Wiring for host communication ... 12-4
 12.2.2 Connections for loader communication ... 12-7
12.3 Setting ... 12-8
 12.3.1 Description of each parameter ... 12-8
 12.3.2 Setting procedure ... 12-9
 12.3.3 Communication requirements ... 12-10
12.4 RKC Communication Protocol ... 12-12
 12.4.1 Polling ... 12-12
 12.4.2 Selecting ... 12-18
12.5 Modbus Protocol ... 12-22
 12.5.1 Message format .. 12-22
 12.5.2 Function code .. 12-23
 12.5.3 Communication mode ... 12-23
 12.5.4 Slave responses .. 12-24
 12.5.5 Calculating CRC-16 ... 12-25
 12.5.6 Register read and write ... 12-28
 12.5.7 Caution for handling communication data 12-32
12.6 Communication Data List ... 12-33
 12.6.1 Reference to communication data list .. 12-33
 12.6.2 Communication data [RKC communication/Modbus] 12-34
12. COMMUNICATION FUNCTION (OPTIONAL)

12.1 Outline

The communication function makes it possible to monitor and set the data of the Temperature Controller RZ100/RZ400 (hereafter called controller) from a host computer. The controller interfaces with the host computer via Modbus or RKC communication (ANSI X3.28-1976 subcategories 2.5 and A4) protocols. Communication function is available only when optional communication function has been specified at the time of ordering.

In addition, the controller RZ100/400 is equipped standard with a loader communication connector. Therefore, loader communication is possible. For reference purposes, the Modbus protocol identifies the host computer as master, the controller as slave.

- **Host communication (RKC communication, Modbus) [Optional]**
 Communication interface: RS-485

 - **Multi-drop connection (Communication interface: RS-485)**
 One host computer (master) can communicate with up to 31 controllers.

- **Loader communication**

 Loader communication allows controller data to be set from a personal computer.

 By saving the data that was set using our Communication Tool PROTEM2 to a computer, the data can be transferred to other controllers, allowing setup to be accomplished much more quickly than when the data is set in each controller using the front panel keys.

 RKC USB communication converter COM-K2 (sold separately) is required for the loader communication.

 ![Diagram](image)

 NOTE

 The Loader port is only for parameter setup. Not used for data logging during operation.

 Loader communication can be used on a RZ100/400 even when the Communication function (optional) is not installed.
Communication Tool PROTEM2

PROTEM2 is an integrated configuration support software to manage parameter setting and measured values of our controllers and consists of the following tools:

- **Base Tool:**
 Used to set/verify controller parameters.

- **Recipe Tool:**
 Used to conduct overall management of parameter set values of our controllers (storing to a computer and transfer to other controllers.)

- **Logger Tool:**
 Used to visualizes various data with graphs and perform data logging in CSV format.

- **Configuration Tool:**
 Used for configure virtual controllers for the Base Tool. *
 * PROTEM2 handles controllers as the unit of a project.
 Controllers connected to the project are called “Virtual controllers.”

PROTEM2 requires Microsoft.NET Framework 4 to be installed on the computer.

PROTEM2 can be used with RKC standard protocol and Modbus protocol.
PROTEM2 can also be used for loader communication and a host communication.

The PROTEM2 can be downloaded from the official RKC website:
http://www.rkcinst.com
12.2 Connections

WARNING

To prevent electric shock or instrument failure, turn off the power before connecting or disconnecting the instrument and peripheral equipment.

12.2.1 Wiring for host communication

Host communication is used for a connection to a host computer via RS-485.

- **Communication terminal number and signal details**

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Signal name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Signal ground</td>
<td>SG</td>
</tr>
<tr>
<td>14</td>
<td>Send data/Receive data</td>
<td>T/R (A)</td>
</tr>
<tr>
<td>15</td>
<td>Send data/Receive data</td>
<td>T/R (B)</td>
</tr>
</tbody>
</table>

- **Connection to the RS-485 port of the host computer (master)**

 Wiring example

 - Screw Size: M3 × 7 (with 5.8 × 5.8 square washer)
 - Recommended tightening torque: 0.4 N·m (4 kgf·cm)
 - Recommended solderless terminals:
 - Manufactured by J.S.T MFG CO.,LTD.
 - Circular terminal with isolation V1.25-MS3
 - (M3 screw, width 5.5 mm, hole diameter 3.2 mm)
 - *R: Termination resistors (Example: 120 Ω 1/2 W)
 - **Note:** If communication errors occur frequently due to the operation environment or the communication distance, connect termination resistors.

The communication cable and termination resistor(s) must be provided by the customer.
12. COMMUNICATION FUNCTION (OPTIONAL)

Connection to the RS-232C port of the host computer (master)

Use a RS-232C/RS-485 converter with an automatic send/receive transfer function.

- Wiring example

![Diagram]

- Connection diagram:
 - RS-485 Paired wire
 - Shielded twisted pair wire
 - RS-232C/RS-485 converter
 - Host computer (Master)
 - Controller (Slave)

- Recommended:
 - CD485, CD485/V manufactured by Data Link, Inc. or equivalent.

- Screw Size: M3 × 7 (with 5.8 × 5.8 square washer)
- Recommended tightening torque: 0.4 N·m (4 kgf·cm)
- Recommended solderless terminals:
 - Manufactured by J.S.T MFG CO., LTD.
 - Circular terminal with isolation V1.25 – MS3
 (M3 screw, width 5.5 mm, hole diameter 3.2 mm)

- Termination resistors (Example: 120 Ω 1/2 W)

The communication cable and termination resistor(s) must be provided by the customer.
Connection to the USB of the host computer (master)

Connect the USB communication converter between the host computer and the controller. When the host computer has a standard USB connector, our communication converter COM-K2 (sold separately) can be used.

Wiring example

- The communication cable and termination resistor(s) must be provided by the customer.
- For the COM-K2, refer to the official RKC website (http://www.rkcinst.com).
12.2.2 Connections for loader communication

RKC USB communication converter COM-K2, loader communication cable and USB cable are required for connecting this controller to the personal computer.

- For the COM-K2, refer to the official RKC website (http://www.rkcinst.com).

Position of loader communication connector

![RZ100 bottom view](image1) ![RZ400 bottom view](image2)

Wiring method

Connect the controller, COM-K2, and personal computer using a USB cable and a loader communication cable. Make sure the connectors are oriented correctly when connecting.

NOTE

To use the loader communication, power on the controller.

![Diagram showing connections](image3)

- Communication Tool
 - PROTEM2
 - Software operation environment: Consult the manual that you downloaded

- Communication port of host computer
 - USB port: Based on USB Ver.2.0

- Communication settings on the computer
 - (The following values are all fixed)
 - Communication speed: 38400 bps
 - Start bit: 1
 - Data bit: 8
 - Parity bit: Without
 - Stop bit: 1

 - The device address for loader communication is fixed at "0."
 - The setting of the RZ100/400 device address is disregarded.
 - The loader communication corresponds to the RKC communication protocol "Based on ANSI X3.28-1976 subcategories 2.5 and A4."

NOTE

When using the loader communication, USB driver for COM-K2 must be installed on the personal computer.

The USB driver for COM-K2 can be downloaded from the official RKC website:

http://www.rkcinst.com
12.3 Setting

12.3.1 Description of each parameter

To establish communication between host computer (master) and controller (slave), it is necessary to set the following parameters. The communication related parameters can be found in the Communication setting mode.

Communication setting mode

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Data range</th>
<th>Description</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPS</td>
<td>Communication protocol</td>
<td>0: RKC communication 1: Modbus</td>
<td>Select the communication protocol type.</td>
<td>Communication Protocol specified at the time of ordering.</td>
</tr>
<tr>
<td>Add</td>
<td>Device address</td>
<td>RKC communication: 0 to 99 Modbus: 1 to 99</td>
<td>Do not use the same device address for more than one controller in multi-drop connection. Each controller must have a unique address in multi-drop connection. In Modbus communication, communication is not possible when the address is 0.</td>
<td>RKC communication: 0 Modbus: 1</td>
</tr>
<tr>
<td>bPS</td>
<td>Communication speed</td>
<td>0: 2400 bps 1: 4800 bps 2: 9600 bps 3: 19200 bps 4: 38400 bps</td>
<td>Set the same communication speed for both the controller (slave) and the host computer (master).</td>
<td>2</td>
</tr>
<tr>
<td>bIT</td>
<td>Data bit configuration</td>
<td>RKC communication: 0 to 11 Modbus: 0, 1, 6, 7, 8, 9 Refer to Data bit configuration table.</td>
<td>Set the same data bit configuration for both the controller (slave) and the host computer (master). In Modbus (host communication), setting 2, 3, 4, 5, 10, or 11 will not establish communication.</td>
<td>0</td>
</tr>
<tr>
<td>Inf</td>
<td>Interval time</td>
<td>0 to 150 (× 1.666 ms) Actual interval time is set value (0 to 150) multiplied by 1.666 (unit: ms).</td>
<td>The interval time for the controller should be set to provide a time for host computer to finish sending all data including stop bit and to switch the line to receive status for the host.</td>
<td>5</td>
</tr>
</tbody>
</table>

* Data bit configuration table

<table>
<thead>
<tr>
<th>Setting</th>
<th>Data bit configuration</th>
<th>Data bit</th>
<th>Parity bit</th>
<th>Stop bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>Without</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>Without</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>Even</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>Even</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>Odd</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>Odd</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setting</th>
<th>Data bit configuration</th>
<th>Data bit</th>
<th>Parity bit</th>
<th>Stop bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>8</td>
<td>Even</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>Odd</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Even</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>Odd</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>Without</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>Without</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Interval time:
The interval time for the controller should be set to provide a time for host computer to finish sending all data including stop bit and to switch the line to receive status for the host. If the interval time between the two is too short, the controller may send data before the host computer is ready to receive it. In this case, communication transmission cannot be conducted correctly.

The communication protocol, device address (slave address), communication speed, data bit configuration, and interval time can also be set by loader communication using PROTEM2. It can also be set by host communication.
12.3.2 Setting procedure

The communication related parameters can be found in the Communication setting mode.

Set value change and registration
- The highlighted digit indicates which digit can be set. The highlighted digit can be shifted by pressing the key.
- However, the changed data is not stored by the operation of the and keys alone. In order to store the new parameter value, the key must be pressed. within 1 minute after the new value is displayed. The new value will then be saved and the display will move to the next parameter.
- In any mode other than the Initial setting mode, if no registration is made within 1 minute after the change, the display returns to the PV/SV monitor. In such a case the changed data is not stored.

Setting sequence

Monitor display mode
PV/SV monitor

Communication setting mode
Communication protocol

Device address

Communication speed

Communication response monitor

Interval time

Data bit configuration

Return to the PV/SV monitor screen displays.
12.3.3 Communication requirements

- **Processing times during data send/receive**

When the host computer is using either the polling or selecting procedure for communication, the following processing times are required for controller to send data:
- Response wait time after controller sends BCC in polling procedure
- Response wait time after controller sends ACK or NAK in selecting procedure

Response send time is time when interval time is set at 0 ms.

RKC communication (Polling procedure) processing times

<table>
<thead>
<tr>
<th>Procedure details</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response send time after controller receives ENQ</td>
<td>6.0 ms max.</td>
</tr>
<tr>
<td>Response send time after controller receives ACK</td>
<td>2.6 ms max.</td>
</tr>
<tr>
<td>Response send time after controller receives NAK</td>
<td>2.6 ms max.</td>
</tr>
<tr>
<td>Response send time after controller sends BCC</td>
<td>63 μs max.</td>
</tr>
</tbody>
</table>

RKC communication (Selecting procedure) processing times

<table>
<thead>
<tr>
<th>Procedure details</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response send time after controller receives BCC</td>
<td>4.4 ms max.</td>
</tr>
<tr>
<td>Response wait time after controller sends ACK</td>
<td>7.4 ms max.</td>
</tr>
<tr>
<td>Response wait time after controller sends NAK</td>
<td>43 μs max.</td>
</tr>
</tbody>
</table>

Modbus processing times

<table>
<thead>
<tr>
<th>Procedure details</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read holding registers [03H]</td>
<td>38 ms max.</td>
</tr>
<tr>
<td>Response send time after the slave receives the query message</td>
<td></td>
</tr>
<tr>
<td>Preset single register [06H]</td>
<td>17.4 ms max.</td>
</tr>
<tr>
<td>Response send time after the slave receives the query message</td>
<td></td>
</tr>
<tr>
<td>Diagnostics (loopback test) [08H]</td>
<td>16.8 ms max.</td>
</tr>
<tr>
<td>Response send time after the slave receives the query message</td>
<td></td>
</tr>
<tr>
<td>Preset multiple registers (Write multiple registers) [10H]</td>
<td>108 ms max.</td>
</tr>
<tr>
<td>Response send time after the slave receives the query message</td>
<td></td>
</tr>
</tbody>
</table>
RS-485 (2-wire system) send/receive timing (RKC communication)

RS-485 communication is conducted through two wires, therefore, the transmission and reception of data requires precise timing.

Polling procedure

<table>
<thead>
<tr>
<th>Host computer</th>
<th>Send data (Possible/Impossible)</th>
<th>Possible</th>
<th>Impossible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sending status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Send data</td>
<td>Possible</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>(Possible/Impossible)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sending status</td>
<td>Impossible</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- a: Response send time after the controller receives [ENQ] + Interval time
- b: Response send time after the controller sends BCC
- c: Response send time after the controller receives [ACK] + Interval time or Response send time after the controller receives [NAK] + Interval time

Selecting procedure

<table>
<thead>
<tr>
<th>Host computer</th>
<th>Send data (Possible/Impossible)</th>
<th>Possible</th>
<th>Impossible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sending status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Send data</td>
<td>Possible</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>(Possible/Impossible)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sending status</td>
<td>Impossible</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- a: Response send time after the controller receives BCC + Interval time
- b: Response wait time after the controller sends ACK or Response wait time after the controller sends NAK

To switch the host computer from transmission to reception, send data must be on line.

The following processing times are required for the controller to process data:

- In polling procedure, Response wait time after the controller sends BCC
- In selecting procedure, Response wait time after the controller sends ACK or NAK

Fail-safe

A transmission error may occur if the transmission line is disconnected, shorted or set to the high-impedance state. In order to prevent the above error, it is recommended that the fail-safe function be provided on the receiver side of the host computer. The fail-safe function can prevent a framing error from its occurrence by making the receiver output stable to the MARK (1) when the transmission line is in the high-impedance state.

Data backup

The nonvolatile memory (EEPROM) for data backup has limitations on the number of memory rewrite times (approx. 1,000,000 times). If set values are frequently changed through communication, please select “Buffer mode” in the EEPROM mode (Identifier: EB or Register address: 001BH).
12.4 RKC Communication Protocol

The RKC communication uses the Polling/Selecting method to establish a data link. The basic procedure follows ANSI X3.28-1976 subcategories 2.5 and A4 basic mode data transmission control procedure (Fast selecting is the selecting method used in this controller).

- The Polling/Selecting procedures are a centralized control method where the host computer controls the entire process. The host computer initiates all communication so the controller responds according to queries and commands from the host.

- The code used in communication is 7-bit ASCII code including transmission control characters. The transmission control characters are EOT (04H), ENQ (05H), ACK (06H), NAK (15H), STX (02H) and ETX (03H). The figures in the parentheses indicate the corresponding hexadecimal number.

Data send/receive state (communication data monitoring and setting) of RKC communication can be checked by using the following software:

Communication Tool “PROTEM2”
The software can be downloaded from the official RKC website:
http://www.rkcinst.com

12.4.1 Polling

Polling is the action where the host computer requests one of the connected controllers to transmit data. An example of the polling procedure is shown below:
12. COMMUNICATION FUNCTION (OPTIONAL)

Polling procedures

(1) Data link initialization

Host computer sends EOT to the controllers to initiate data link before polling sequence.

(2) Data sent from host computer - Polling sequence

The host computer sends the polling sequence in the following type of format:

Example:

```
1. Address (2 digits)
   The device address specifies the controller to be polled and each controller must have its own unique device address.
   This data is a device address of the controller to be selected and must be the same as the device address set value in item 12.3 Setting (P. 12-8).

2. Identifier (2 digits)
   The identifier specifies the type of data that is requested from the controller. Always attach the ENQ code to the end of the identifier.
   For the identifier, refer to 12.6 Communication Data List (P. 12-33).

3. ENQ
   The ENQ is the transmission control character that indicates the end of the polling sequence.
   The ENQ must be attached to the end of the identifier.
   The host computer then must wait for a response from the controller.
```

(3) Data sent from the controller

If the polling sequence is received correctly, the controller sends data in the following format:

```
1. STX
   STX is the transmission control character which indicates the start of the text transmission (identifier and data).

2. Identifier (2 digits)
   The identifier indicates the type of data (measured value, status and set value) sent to the host computer.
   For the identifier, refer to 12.6 Communication Data List (P. 12-33).
```
3. **Data (6 digits)**
 Data which is indicated by an identifier of the controller. It is expressed in decimal ASCII code including a minus sign (−) and a decimal point. Data is not zero-suppressed.

 - The number of the digit of the following item is other than 6 digits.
 - Instrument serial number monitor (identifier RX): 10 digits
 - Model code monitor (identifier ID): 32 digits

4. **ETX**
 ETX is a transmission control character used to indicate the end of text transmission.

5. **BCC**
 BCC (Block Check Character) detects error by using horizontal parity (even number).
 Calculation method of BCC: *Exclusive OR* all data and characters from STX through ETX, not including STX

 Example:

 $\text{BCC} = 4DH \oplus 31H \oplus 30H \oplus 31H \oplus 30H \oplus 30H \oplus 2EH \oplus 30H \oplus 03H = 60H$ (⊕: Exclusive OR)
 Value of BCC becomes 60H.

(4) **EOT sent from the controller (Ending data transmission from the controller)**

In the following cases, the controller sends EOT to terminate the data link:

- When the specified identifier is invalid
- When there is an error in the data type
- When data is not sent from the host computer even if the data link is initialized
- When all the data has been sent

(5) **No response from the controller**

The controller will not respond if the polling address is not received correctly. It may be necessary for the host computer to take corrective action such as a time-out.

(6) **ACK (Acknowledgment)**

An acknowledgment ACK is sent by the host computer when data received is correct. When the controller receives ACK from the host computer, the controller will send any remaining data of the next identifier without additional action from the host computer.

For the identifier, refer to **12.6.2 Communication data [RKC communication/Modbus]** (P. 12-34).

When the host computer determines to terminate the data link, EOT is sent from the host computer.
(7) **NAK (Negative acknowledge)**

If the host computer does not receive correct data from the controller, it sends a negative acknowledgment NAK to the controller. The controller will re-send the same data when NAK is received. This cycle will go on continuously until either recovery is achieved or the data link is corrected at the host computer.

(8) **No response from host computer**

When the host computer does not respond within approximately three seconds after the controller sends data, the controller sends EOT to terminate the data link. (Time out: 3 seconds)

(9) **Indefinite response from host computer**

The controller sends EOT to terminate the data link when the host computer response is indefinite.

(10) **EOT (Data link termination)**

The host computer sends EOT message when it is necessary to suspend communication with the controller or to terminate the data link due to lack of response from the controller.
Polling procedure example (When the host computer requests data)

1. Normal transmission

 (1) When the measured value (PV) monitor (identifier: M1) is polled

 ![Diagram of polling procedure example]

 (2) Polling the next identifier with ACK (acknowledgment) after polling ends

 ![Diagram of polling procedure example]

 To *1
12. COMMUNICATION FUNCTION (OPTIONAL)

- Error transmission

Host computer send

<table>
<thead>
<tr>
<th>E</th>
<th>O T</th>
<th>0</th>
<th>0</th>
<th>M</th>
<th>1</th>
<th>E N Q</th>
<th>O T</th>
</tr>
</thead>
<tbody>
<tr>
<td>04H</td>
<td>30H</td>
<td>30H</td>
<td>40H</td>
<td>31H</td>
<td>05H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Address Identifier

To *1

Controller send

<table>
<thead>
<tr>
<th>S T X</th>
<th>M</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>E T X</th>
<th>B C C</th>
</tr>
</thead>
<tbody>
<tr>
<td>02H</td>
<td>4DH</td>
<td>31H</td>
<td>30H</td>
<td>31H</td>
<td>30H</td>
<td>30H</td>
<td>2EH</td>
<td>03H</td>
</tr>
</tbody>
</table>

Identifier Data

Controller re-send

To *1

Host computer send

<table>
<thead>
<tr>
<th>E</th>
<th>O T</th>
<th>0</th>
<th>0</th>
<th>M</th>
<th>1</th>
<th>E N Q</th>
<th>O T</th>
</tr>
</thead>
<tbody>
<tr>
<td>04H</td>
<td>30H</td>
<td>30H</td>
<td>40H</td>
<td>31H</td>
<td>05H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Identifier Data

Controller send
12.4.2 Selecting

Selecting is the action where the host computer requests one of the connected controllers to receive data. An example of the selecting procedure is shown below:

- **Selecting procedures**
 - **(1) Data link initialization**
 Host computer sends EOT to the controllers to initiate data link before selecting sequence.

 - **(2) Sending selecting address from the host computer**
 Host computer sends selecting address for the selecting sequence.

 - **Address (2 digits)**
 This data is a device address of the controller to be selected and must be the same as the device address set value in item **12.3 Setting (P. 12-8)**.

 - As long as the data link is not initialized by sending or receiving EOT, the selecting address once sent becomes valid.
(3) Data sent from the host computer

The host computer sends data for the selecting sequence with the following format:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>STX</td>
<td>Identifier</td>
<td>Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETX</td>
<td></td>
<td>BCC</td>
</tr>
</tbody>
</table>

For the STX, ETX and BCC, refer to 12.4.1 Polling (P. 12-12).

1. Identifier (2 digits)

The identifier specifies the type of data that is requested from the controller, such as set value.

For details, refer to 12.6 Communication Data List (P. 12-33).

2. Data

Data which is indicated by an identifier of the controller is expressed in decimal ASCII code including a minus sign (–) and a decimal point. The data can be zero-suppressed. The number of digits varies depending on the type of identifier. (Within 6 digits)

About numerical data

Receivable data

- The controller can receive zero-suppressed data and whole number data (data without decimal fraction).

Example: For example, even if the data –1.5 is sent by the host as –001.5, –01.5, –1.5, –1.50, –1.500, the controller receives the data as –1.5.

- When the host computer sends data containing a decimal point to the item without a decimal point, the controller receives a message with the value that is cut off below the decimal point.

Example: When setting range is 0 to 200, the controller will receive as follows:

<table>
<thead>
<tr>
<th>Send data</th>
<th>0.5</th>
<th>100.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive data</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

- The controller receives a value truncated to a specified number of decimal places. The digits smaller than that will be cut off.

Example: When setting range is –10.00 to +10.00, the controller will receive as follows:

<table>
<thead>
<tr>
<th>Send data</th>
<th>–.5</th>
<th>–.058</th>
<th>.05</th>
<th>–0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive data</td>
<td>–0.50</td>
<td>–0.05</td>
<td>0.05</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Unreceivable data

The controller sends NAK when received a following data:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Plus sign and data with a plus sign</td>
</tr>
<tr>
<td>–</td>
<td>Only minus sign (without a number)</td>
</tr>
<tr>
<td>.</td>
<td>Only decimal point (period)</td>
</tr>
<tr>
<td>–.</td>
<td>Only minus sign and a decimal point</td>
</tr>
</tbody>
</table>
(4) **ACK (Acknowledgment)**

An acknowledgment ACK is sent by the controller when data received is correct. When the host computer receives ACK from the controller, the host computer will send any remaining data. If there is no more data to be sent to the controller, the host computer sends EOT to terminate the data link.

(5) **NAK (Negative acknowledge)**

If the controller does not receive correct data from the host computer, it sends a negative acknowledgment NAK to the host computer. Corrections, such as re-send, must be made at the host computer. The controller will send NAK in the following cases:

- When an error occurs on communication the line (parity, framing error, etc.)
- When a BCC check error occurs
- When the specified identifier is invalid
- When receive data exceeds the setting range
- When receive data is the identifier of RO (read only)

(6) **No response from controller**

The controller does not respond when it cannot receive the selecting address, STX, ETX or BCC.

(7) **EOT (Data link termination)**

The host computer sends EOT when there is no more data to be sent from the host computer or there is no response from the controller.
Selecting procedure example (When the host computer sends the set values)

- Normal transmission

<table>
<thead>
<tr>
<th>Normal transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host computer send</td>
</tr>
<tr>
<td>EOT 04H 00H SX S1 0100 0 . 0 EOT 03H</td>
</tr>
<tr>
<td>Address</td>
</tr>
<tr>
<td>ACK 06H</td>
</tr>
</tbody>
</table>

Controller send

<table>
<thead>
<tr>
<th>Normal transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>*1 Host computer send</td>
</tr>
<tr>
<td>EOT 04H SX S1 0050 0 . 0 EOT 03H</td>
</tr>
<tr>
<td>Identifier</td>
</tr>
<tr>
<td>ACK 06H</td>
</tr>
</tbody>
</table>

Controller send

- Error transmission

<table>
<thead>
<tr>
<th>Error transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host computer send</td>
</tr>
<tr>
<td>EOT 04H 00H SX S1 0100 0 . 0 EOT 03H</td>
</tr>
<tr>
<td>Address</td>
</tr>
<tr>
<td>ACK 15H</td>
</tr>
</tbody>
</table>

Controller send

<table>
<thead>
<tr>
<th>Error transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>*1 Host computer re-send</td>
</tr>
<tr>
<td>EOT 04H SX S1 0100 0 . 0 EOT 03H</td>
</tr>
<tr>
<td>Identifier</td>
</tr>
<tr>
<td>ACK 06H</td>
</tr>
</tbody>
</table>

Controller send
12.5 Modbus Protocol

The master controls communication between master and slave. A typical message consists of a request (query message) sent from the master followed by an answer (response message) from the slave. When master begins data transmission, a set of data is sent to the slave in a fixed sequence. When it is received, the slave decodes it, takes the necessary action, and returns data to the master.

Data send/receive state (communication data setting) of Modbus can be checked by using the following software:

- Communication Tool “PROTEM2”
- The software can be downloaded from the official RKC website: http://www.rkcinst.com

12.5.1 Message format

The message consists of four parts: slave address, function code, data, and error check code which are always transmitted in the same sequence.

<table>
<thead>
<tr>
<th>Slave address</th>
<th>Function code</th>
<th>Data</th>
<th>Error check (CRC-16)</th>
</tr>
</thead>
</table>

 Slave address

The slave address is a number from 1 to 99 manually set at the front key panel of the controller.

- Master does not communicate with the slave when the address is set to “0.”
- For details, refer to 12.3 Setting (P. 12-8).

Although all connected slave units receive the query message sent from the master, only the slave with the slave address coinciding with the query message will accept the message.

 Function code

The function codes are the instructions set at the master and sent to the slave describing the action to be executed. The function codes are included when the slave responds to the master.

- For details, refer to 12.5.2 Function code (P. 12-23).

 Data

The data to execute the function specified by the function code is sent to the slave and corresponding data returned to the master from the slave.

- For details, refer to 12.5.6 Register read and write (P. 12-28) and 12.6 Communication Data List (P. 12-33).

 Error check

An error checking code (CRC-16: Cyclic Redundancy Check) is used to detect an error in the signal transmission.

- For details, refer to 12.5.5 Calculating CRC-16 (P. 12-25).
12. COMMUNICATION FUNCTION (OPTIONAL)

12.5.2 Function code

Function code contents

<table>
<thead>
<tr>
<th>Function code (Hexadecimal)</th>
<th>Function</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>03H</td>
<td>Read holding registers</td>
<td>Measured (PV) value monitor, Alarm state monitor, etc.</td>
</tr>
<tr>
<td>06H</td>
<td>Preset single register</td>
<td>Set value (SV), Alarm set value, PID constants, PV bias, etc. (Write single data)</td>
</tr>
<tr>
<td>08H</td>
<td>Diagnostics (loopback test)</td>
<td>loopback test</td>
</tr>
<tr>
<td>10H</td>
<td>Preset multiple registers (Write multiple registers)</td>
<td>Set value (SV), Alarm set value, PID constants, PV bias, etc. (Write multiple consecutive data)</td>
</tr>
</tbody>
</table>

Message length of each function (Unit: byte)

<table>
<thead>
<tr>
<th>Function code (Hexadecimal)</th>
<th>Function</th>
<th>Query message</th>
<th>Response message</th>
</tr>
</thead>
<tbody>
<tr>
<td>03H</td>
<td>Read holding registers</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>06H</td>
<td>Preset single register</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>08H</td>
<td>Diagnostics (loopback test)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>10H</td>
<td>Preset multiple registers (Write multiple registers)</td>
<td>11</td>
<td>255</td>
</tr>
</tbody>
</table>

12.5.3 Communication mode

Signal transmission between the master and slaves is conducted in Remote Terminal Unit (RTU) mode.

<table>
<thead>
<tr>
<th>Items</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data bit length</td>
<td>8-bit (Binary)</td>
</tr>
<tr>
<td>Start mark of message</td>
<td>Unused</td>
</tr>
<tr>
<td>End mark of message</td>
<td>Unused</td>
</tr>
<tr>
<td>Message length</td>
<td>Refer to 12.5.2 Function code</td>
</tr>
<tr>
<td>Data time interval</td>
<td>Less than 24-bit time *</td>
</tr>
<tr>
<td>Error check</td>
<td>CRC-16 (Cyclic Redundancy Check)</td>
</tr>
</tbody>
</table>

* When sending a command message from the master, set intervals of data configuring one message to time shorter than the 24-bit time. If time intervals become time longer than the 24-bit time the relevant slave assumes that message sending from the master is terminated and there is no response.
12.5.4 Slave responses

(1) Normal response
- In the response message of the Read Holding Registers, the slave returns the read out data and the number of data items with the same slave address and function code as the query message.
- In the response message of the Preset Single Register, the slave returns the same message as the query message.
- In the response message of the Diagnostics (Loopback test), the slave returns the same message as the query message.
- In the response message of the Preset Multiple Registers (Write Multiple Registers), the slave returns the slave address, the function code, starting number, and number of holding registers in the multi-query message.

(2) Defective message response
- If the query message from the master is defective, except for transmission error, the slave returns the error response message without any action.

<table>
<thead>
<tr>
<th>Error code</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Function code error (An unsupported function code was specified)</td>
</tr>
<tr>
<td>2</td>
<td>When the mismatched address is specified.</td>
</tr>
<tr>
<td></td>
<td>Address other than 0000H to 00AFH is specified as the starting number.</td>
</tr>
<tr>
<td>3</td>
<td>The maximum number (Read from a read holding register or write to Preset multiple registers [Write multiple registers]) has been exceeded.</td>
</tr>
<tr>
<td></td>
<td>The setting of the number of data (the number of requested byte) is not set to a double of the requested number of data at the time of “Preset multiple registers (Write multiple registers)”</td>
</tr>
<tr>
<td>4</td>
<td>Self-diagnostic error response</td>
</tr>
</tbody>
</table>

(3) No response
The slave ignores the query message and does not respond when:
- The slave address in the query message does not coincide with any slave address settings.
- The CRC code of the master does not coincide with that of the slave.
- Transmission error such as overrun, framing, parity etc., is found in the query message.
- Data time interval in the query message from the master exceeds 24-bit time.
12. COMMUNICATION FUNCTION (OPTIONAL)

12.5.5 Calculating CRC-16

The Cyclic Redundancy Check (CRC) is a 2 byte (16-bit) error check code. After constructing the data message, not including start, stop, or parity bit, the master calculates a CRC code and appends this to the end of the message. The slave will calculate a CRC code from the received message, and compare it with the CRC code from the master. If they do not coincide, a communication error has occurred and the slave does not respond.

The CRC code is formed in the following sequence:

1. Load FFFFH to a 16-bit CRC register.
2. Exclusive OR (⊕) the first byte (8 bits) of the message with the CRC register. Return the result to the CRC register.
3. Shift the CRC register 1 bit to the right.
4. If the carry flag is 1, exclusive OR the CRC register with A001 hexadecimal and return the result to the CRC register. If the carry flag is 0, repeat step 3.
5. Repeat step 3 and 4 until there have been 8 shifts.
6. Exclusive OR the next byte (8 bits) of the message with the CRC register.
7. Repeat step 3 through 6 for all bytes of the message (except the CRC).
8. The CRC register contains the 2 byte CRC error code. When they are appended to the message, the low-order byte is appended first, followed by the high-order byte.
The flow chart of CRC-16

START

FFFFH → CRC Register

CRC Register \(\oplus\) next byte of the message → CRC Register

0 \(\rightarrow\) n

Shift CRC Register right 1 bit

Carry flag is 1

Yes

CRC Register \(\oplus\) A001H → CRC Register

n + 1 \(\rightarrow\) n

No

n > 7

Yes

Is message complete?

No

Yes

Reverse with high-order byte and low-order byte of CRC Register

END

The \(\oplus\) symbol indicates an exclusive OR operation. The symbol for the number of data bits is \(n\).
Example of a CRC calculation in the ‘C’ language

This routine assumes that the data types ‘uint16’ and ‘uint8’ exist. These are unsigned 16-bit integer (usually an ‘unsigned short int’ for most compiler types) and unsigned 8-bit integer (unsigned char). ‘z_p’ is a pointer to a Modbus message, and ‘z_message_length’ is its length, excluding the CRC. Note that the Modbus message will probably contain NULL characters and so normal C string handling techniques will not work.

```c
uint16 calculate_crc ( byte *z_p, uint16 z_message_length )

/* CRC runs cyclic Redundancy Check Algorithm on input z_p */
/* Returns value of 16 bit CRC after completion and */
/* always adds 2 crc bytes to message */
/* returns 0 if incoming message has correct CRC */
{
    uint16 CRC= 0xffff;
    uint16 next;
    uint16 carry;
    uint16 n;
    uint8 crch, crcl;

    while (z_message_length--) {
        next = (uint16) *z_p;
        CRC ^= next;
        for (n = 0; n < 8; n++) {
            carry = CRC & 1;
            CRC >>= 1;
            if (carry) {
                CRC ^= 0xA001;
            }
        }
        z_p++;
    }
    crch = CRC / 256;
    crcl = CRC % 256
    z_p[z_message_length++] = crcl;
    z_p[z_message_length] = crch;
    return CRC;
}
```
12.5.6 Register read and write

Read holding registers [03H]

The query message specifies the starting register address and quantity of registers to be read. The contents of the holding registers are entered in the response message as data, divided into two parts: the high-order 8-bit and the low-order 8-bit, arranged in the order of the register numbers.

Example: The contents of the four holding registers from 0000H to 0003H are the read out from slave address 2.

Query message

<table>
<thead>
<tr>
<th>Slave address</th>
<th>02H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function code</td>
<td>03H</td>
</tr>
<tr>
<td>Starting number</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>00H</td>
</tr>
<tr>
<td>Low</td>
<td>00H</td>
</tr>
<tr>
<td>Quantity</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>00H</td>
</tr>
<tr>
<td>Low</td>
<td>00H</td>
</tr>
<tr>
<td>CRC-16</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>44H</td>
</tr>
<tr>
<td>Low</td>
<td>3AH</td>
</tr>
</tbody>
</table>

Normal response message

<table>
<thead>
<tr>
<th>Slave address</th>
<th>02H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function code</td>
<td>03H</td>
</tr>
<tr>
<td>Number of data</td>
<td>08H</td>
</tr>
<tr>
<td>First holding register contents</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>00H</td>
</tr>
<tr>
<td>Low</td>
<td>62H</td>
</tr>
<tr>
<td>Next holding register contents</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>00H</td>
</tr>
<tr>
<td>Low</td>
<td>14H</td>
</tr>
<tr>
<td>Next holding register contents</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>00H</td>
</tr>
<tr>
<td>Low</td>
<td>00H</td>
</tr>
<tr>
<td>Next holding register contents</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>00H</td>
</tr>
<tr>
<td>Low</td>
<td>00H</td>
</tr>
<tr>
<td>CRC-16</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>E9H</td>
</tr>
<tr>
<td>Low</td>
<td>56H</td>
</tr>
</tbody>
</table>

Error response message

<table>
<thead>
<tr>
<th>Slave address</th>
<th>02H</th>
</tr>
</thead>
<tbody>
<tr>
<td>80H + Function code (+ denotes a logical add)</td>
<td>83H</td>
</tr>
<tr>
<td>Error code</td>
<td>03H</td>
</tr>
<tr>
<td>CRC-16</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>F1H</td>
</tr>
<tr>
<td>Low</td>
<td>31H</td>
</tr>
</tbody>
</table>

First holding register address

The setting must be between 1 (0001H) and 125 (007DH).
Preset single register [06H]

The query message specifies data to be written into the designated holding register. The write data is arranged in the query message with high-order 8-bit first and low-order 8-bit next. Only R/W holding registers can be specified.

Example: Data is written into the holding register 0006H of slave address 1.

Query message

<table>
<thead>
<tr>
<th>Slave address</th>
<th>01H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function code</td>
<td>06H</td>
</tr>
<tr>
<td>Holding register number</td>
<td>High 00H</td>
</tr>
<tr>
<td>Write data</td>
<td>High 00H</td>
</tr>
<tr>
<td>CRC-16</td>
<td>High 68H</td>
</tr>
</tbody>
</table>

Normal response message

<table>
<thead>
<tr>
<th>Slave address</th>
<th>01H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function code</td>
<td>06H</td>
</tr>
<tr>
<td>Holding register number</td>
<td>High 00H</td>
</tr>
<tr>
<td>Write data</td>
<td>High 00H</td>
</tr>
<tr>
<td>CRC-16</td>
<td>High 68H</td>
</tr>
</tbody>
</table>

Error response message

<table>
<thead>
<tr>
<th>Slave address</th>
<th>01H</th>
</tr>
</thead>
<tbody>
<tr>
<td>80H + Function code (+ denotes a logical add)</td>
<td>86H</td>
</tr>
<tr>
<td>Error code</td>
<td>02H</td>
</tr>
<tr>
<td>CRC-16</td>
<td>High C3H</td>
</tr>
</tbody>
</table>
12. COMMUNICATION FUNCTION (OPTIONAL)

- **Diagnostics (Loopback test) [08H]**

 The master’s query message will be returned as the response message from the slave. This function checks the communication system between the master and slave (the controller).

 Example: Loopback test for slave address 1

 Query message

 | Slave address | 01H |
 | Function code | 08H |
 | Test code | |
 | High | 00H |
 | Low | 00H |
 | Data | |
 | High | 1FH |
 | Low | 34H |
 | CRC-16 | |
 | High | E9H |
 | Low | ECH |

 Test code must be set to “00.”

 Any pertinent data

 Normal response message

 | Slave address | 01H |
 | Function code | 08H |
 | Test code | |
 | High | 00H |
 | Low | 00H |
 | Data | |
 | High | 1FH |
 | Low | 34H |
 | CRC-16 | |
 | High | E9H |
 | Low | ECH |

 Contents will be the same as query message data.

 Error response message

 | Slave address | 01H |
 | 80H + Function code (+ denotes a logical add) | 88H |
 | Error code | 03H |
 | CRC-16 | |
 | High | 06H |
 | Low | 01H |
Preset multiple registers (Write multiple registers) [10H]

The query message specifies the starting register address and quantity of registers to be written. The write data is arranged in the query message with high-order 8-bit first and low-order 8-bit next. Only R/W holding registers can be specified.

Example: Data is written into the two holding registers from 0066H to 0067H of slave address 1.

<table>
<thead>
<tr>
<th>Query message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slave address</td>
</tr>
<tr>
<td>Function code</td>
</tr>
<tr>
<td>Starting number</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Quantity</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Number of data</td>
</tr>
<tr>
<td>Data to first register</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Data to next register</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CRC-16</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normal response message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slave address</td>
</tr>
<tr>
<td>Function code</td>
</tr>
<tr>
<td>Starting number</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Quantity</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CRC-16</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error response message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slave address</td>
</tr>
<tr>
<td>80H + Function code (+ denotes a logical add)</td>
</tr>
<tr>
<td>Error code</td>
</tr>
<tr>
<td>CRC-16</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
12.5.7 Caution for handling communication data

- The numeric range of data used in Modbus protocol is 0000H to FFFFH. Only the set value within the setting range is effective.

 FFFFH represents \(-1\).

- The Modbus protocol does not recognize data with decimal points during communication.

 Example 1: When Manipulated output value monitor [heat-side] is 5.0 %, 5.0 is processed as 50, \(50 = 0032H\).

<table>
<thead>
<tr>
<th>Manipulated output value monitor [heat-side]</th>
<th>High</th>
<th>00H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>32H</td>
</tr>
</tbody>
</table>

Example 2: When Set value (SV) is \(-20.0 \, ^\circ C\), \(-20.0\) is processed as \(-200\), \(-200 = 0000H - 00C8H = FF38H\).

<table>
<thead>
<tr>
<th>Set value (SV)</th>
<th>High</th>
<th>FFH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>38H</td>
</tr>
</tbody>
</table>

- If data (holding register) exceeding the accessible address range is accessed, an error response message is returned.

- Read data of unused item is “0.”

- Any attempt to write to an unused item is not processed as an error. Data cannot be written into an unused item.

- If data range or address error occurs during data writing (Write Action), it is not processed as an error. Normal data is written in data register but data with error is not written; therefore, it is recommended to confirm data of changed items after the data setting.

- Communication items not existing in the product because of the specifications are handled as “0” when the data is read in. If write action to this item is performed, no error message is indicated and no data is written.

- Commands should be sent at time intervals of 24 bits after the master receives the response message.
12.6 Communication Data List

12.6.1 Reference to communication data list

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Identifier</th>
<th>Digits</th>
<th>Register address</th>
<th>Attribute</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Measured value (PV) monitor</td>
<td>M1</td>
<td>6</td>
<td>0000</td>
<td>RO</td>
<td>Measured range low – (5 % of Measured range) to Measured range high + (5 % of Measured range) For a range with a decimal point, the maximum display range is -199.9 to +999.9. Varies with the setting of the Decimal point position. Refer to Measured range table (P. 14-2)</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>Current transformer 1 (CT1) input value monitor</td>
<td>M2</td>
<td>6</td>
<td>0001</td>
<td>RO</td>
<td>0.0 to 100.0 A</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>Current transformer 2 (CT2) input value monitor</td>
<td>M3</td>
<td>6</td>
<td>0002</td>
<td>RO</td>
<td>0.0 to 100.0 A</td>
<td>—</td>
</tr>
</tbody>
</table>

(1) Name: Communication data name
(2) Identifier: Identifier for RKC communication
(3) Digits: Number of digits for RKC communication
(4) Register address: Register address for Modbus communication
 HEX: Hexadecimal
 DEC: Decimal
(5) Attribute: A method of how communication data items are read or written when viewed from the host computer is described.
 RO: Read only data
 R/W: Read and Write data
(6) Data range: Read or write range of communication data
 • RKC communication
 ASCII code data of 6 digits
 Most significant digit ——— Least significant digit
 • Modbus
 16-bit data
 Bit 15 ——— Bit 0
(7) Factory set value: Factory set value of communication data
12.6.2 Communication data [RKC communication/Modbus]

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Identifier</th>
<th>Digits</th>
<th>Register address</th>
<th>Attribute</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Measured value (PV) monitor</td>
<td>M1</td>
<td>6</td>
<td>0000</td>
<td>RO</td>
<td>Measured range low – (5 % of Measured range) to Measured range high + (5 % of Measured range)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For a range with a decimal point, the maximum display range is −199.9 to +999.9. Varies with the setting of the Decimal point position. Refer to Measured range table (P. 14-2)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Current transformer 1 (CT1) input value monitor</td>
<td>M2</td>
<td>6</td>
<td>0001</td>
<td>RO</td>
<td>0.0 to 100.0 A</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>Current transformer 2 (CT2) input value monitor</td>
<td>M3</td>
<td>6</td>
<td>0002</td>
<td>RO</td>
<td>0.0 to 100.0 A</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>Alarm 1 state monitor</td>
<td>AA</td>
<td>6</td>
<td>0003</td>
<td>RO</td>
<td>0: Alarm 1 OFF 1: Alarm 1 ON</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>Alarm 2 state monitor</td>
<td>AB</td>
<td>6</td>
<td>0004</td>
<td>RO</td>
<td>0: Alarm 2 OFF 1: Alarm 2 ON</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>Burnout state monitor</td>
<td>B1</td>
<td>6</td>
<td>0005</td>
<td>RO</td>
<td>0: OFF 1: ON (Burnout state)</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>Error code</td>
<td>ER</td>
<td>6</td>
<td>0036</td>
<td>RO</td>
<td>RKC communication 1: Adjustment data error 2: Data back-up error 4: A/D conversion error (Including temperature compensation error)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Modbus (Bit data) Bit 0: Adjustment data error Bit 1: Data back-up error Bit 2: A/D conversion error (Including temperature compensation error) Bit 3 to 15: Unused Data 0: OFF 1: ON [Decimal number: 0 to 7]</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>RUN/STOP transfer</td>
<td>SR</td>
<td>6</td>
<td>0019</td>
<td>R/W</td>
<td>0: RUN 1: STOP</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Set value (SV)</td>
<td>SI</td>
<td>6</td>
<td>0006</td>
<td>R/W</td>
<td>Setting limiter low to Setting limiter high Varies with the setting of the Decimal point position.</td>
<td>0 or 0.0</td>
</tr>
<tr>
<td>10</td>
<td>Alarm 1 set value (ALM1) (Alarm 1 set value (ALM1) [high])</td>
<td>A1</td>
<td>6</td>
<td>0007</td>
<td>R/W</td>
<td>−1999 to +9999 or −199.9 to +999.9 (Unit: °C [°F]) Varies with the setting of the Decimal point position.</td>
<td>10 or 10.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Identifier</th>
<th>Digits</th>
<th>Register address</th>
<th>Attribute</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Measured value (PV) monitor</td>
<td>M1</td>
<td>6</td>
<td>0000</td>
<td>RO</td>
<td>Measured range low – (5 % of Measured range) to Measured range high + (5 % of Measured range)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For a range with a decimal point, the maximum display range is −199.9 to +999.9. Varies with the setting of the Decimal point position. Refer to Measured range table (P. 14-2)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Current transformer 1 (CT1) input value monitor</td>
<td>M2</td>
<td>6</td>
<td>0001</td>
<td>RO</td>
<td>0.0 to 100.0 A</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>Current transformer 2 (CT2) input value monitor</td>
<td>M3</td>
<td>6</td>
<td>0002</td>
<td>RO</td>
<td>0.0 to 100.0 A</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>Alarm 1 state monitor</td>
<td>AA</td>
<td>6</td>
<td>0003</td>
<td>RO</td>
<td>0: Alarm 1 OFF 1: Alarm 1 ON</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>Alarm 2 state monitor</td>
<td>AB</td>
<td>6</td>
<td>0004</td>
<td>RO</td>
<td>0: Alarm 2 OFF 1: Alarm 2 ON</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>Burnout state monitor</td>
<td>B1</td>
<td>6</td>
<td>0005</td>
<td>RO</td>
<td>0: OFF 1: ON (Burnout state)</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>Error code</td>
<td>ER</td>
<td>6</td>
<td>0036</td>
<td>RO</td>
<td>RKC communication 1: Adjustment data error 2: Data back-up error 4: A/D conversion error (Including temperature compensation error)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Modbus (Bit data) Bit 0: Adjustment data error Bit 1: Data back-up error Bit 2: A/D conversion error (Including temperature compensation error) Bit 3 to 15: Unused Data 0: OFF 1: ON [Decimal number: 0 to 7]</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>RUN/STOP transfer</td>
<td>SR</td>
<td>6</td>
<td>0019</td>
<td>R/W</td>
<td>0: RUN 1: STOP</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Set value (SV)</td>
<td>SI</td>
<td>6</td>
<td>0006</td>
<td>R/W</td>
<td>Setting limiter low to Setting limiter high Varies with the setting of the Decimal point position.</td>
<td>0 or 0.0</td>
</tr>
<tr>
<td>10</td>
<td>Alarm 1 set value (ALM1) (Alarm 1 set value (ALM1) [high])</td>
<td>A1</td>
<td>6</td>
<td>0007</td>
<td>R/W</td>
<td>−1999 to +9999 or −199.9 to +999.9 (Unit: °C [°F]) Varies with the setting of the Decimal point position.</td>
<td>10 or 10.0</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Identifier</td>
<td>Digits</td>
<td>Register address</td>
<td>Attribute</td>
<td>Data range</td>
<td>Factory set value</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------------</td>
<td>--------</td>
<td>-----------------</td>
<td>-----------</td>
<td>------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HEX</td>
<td>DEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Alarm 2 set value (ALM2) (Alarm 2 set value (ALM2) [high])</td>
<td>A2</td>
<td>6</td>
<td>0008</td>
<td>8</td>
<td>R/W</td>
<td>−1999 to +9999 or −199.9 to +999.9 (Unit: °C [°F]) Varies with the setting of the Decimal point position.</td>
</tr>
<tr>
<td>12</td>
<td>Heater break alarm 1 (HBA1) set value</td>
<td>A3</td>
<td>6</td>
<td>0009</td>
<td>9</td>
<td>R/W</td>
<td>0.0 to 100.0 A (0.0: HBA function OFF) 0.0</td>
</tr>
<tr>
<td>13</td>
<td>Heater break alarm 2 (HBA2) set value</td>
<td>A4</td>
<td>6</td>
<td>000A</td>
<td>10</td>
<td>R/W</td>
<td>0.0 to 100.0 A (0.0: HBA function OFF) 0.0</td>
</tr>
<tr>
<td>14</td>
<td>Control loop break alarm (LBA) time</td>
<td>A5</td>
<td>6</td>
<td>000B</td>
<td>11</td>
<td>R/W</td>
<td>0.1 to 200.0 minutes 8.0</td>
</tr>
<tr>
<td>15</td>
<td>LBA deadband (LBD)</td>
<td>A6</td>
<td>6</td>
<td>000C</td>
<td>12</td>
<td>R/W</td>
<td>0 to 9999 (Unit: °C [°F]) 0</td>
</tr>
<tr>
<td>16</td>
<td>Autotuning (AT)</td>
<td>G1</td>
<td>6</td>
<td>000D</td>
<td>13</td>
<td>R/W</td>
<td>0: PID control 1: Start Autotuning (AT) When the Autotuning (AT) is finished, the control will automatically return to “0: PID control.” 0</td>
</tr>
<tr>
<td>17</td>
<td>Unused</td>
<td>G2</td>
<td>6</td>
<td>000E</td>
<td>14</td>
<td>R/W</td>
<td>Must be always “0” —</td>
</tr>
<tr>
<td>18</td>
<td>Proportional band [heat-side]</td>
<td>P1</td>
<td>6</td>
<td>000F</td>
<td>15</td>
<td>R/W</td>
<td>0 (0.0) to Input span (Unit: °C [°F]) For a scale range with a decimal point, when the input span exceeds the display limit, the maximum value is 999.9. Varies with the setting of the Decimal point position. 0 (0.0): ON/OFF action 30 or 30.0</td>
</tr>
<tr>
<td>19</td>
<td>Integral time</td>
<td>I1</td>
<td>6</td>
<td>0010</td>
<td>16</td>
<td>R/W</td>
<td>0 to 3600 seconds (0: PD action) 240</td>
</tr>
<tr>
<td>20</td>
<td>Derivative time</td>
<td>D1</td>
<td>6</td>
<td>0011</td>
<td>17</td>
<td>R/W</td>
<td>0 to 3600 seconds (0: PI action) 60</td>
</tr>
<tr>
<td>21</td>
<td>Anti-reset windup (ARW)</td>
<td>W1</td>
<td>6</td>
<td>0012</td>
<td>18</td>
<td>R/W</td>
<td>0 to 100 % of Proportional band [heat-side] (0: Integral action is always OFF) 100</td>
</tr>
<tr>
<td>22</td>
<td>Proportional cycle time [heat-side]</td>
<td>T0</td>
<td>6</td>
<td>0013</td>
<td>19</td>
<td>R/W</td>
<td>1 to 100 seconds Relay contact output: 20 Voltage pulse output: 2</td>
</tr>
<tr>
<td>23</td>
<td>Proportional band [cool-side]</td>
<td>P2</td>
<td>6</td>
<td>0014</td>
<td>20</td>
<td>R/W</td>
<td>1 to 1000 % of Proportional band [heat-side] (ON/OFF action of cool-side only is not possible.) 100</td>
</tr>
<tr>
<td>24</td>
<td>Overlap/Deadband</td>
<td>V1</td>
<td>6</td>
<td>0015</td>
<td>21</td>
<td>R/W</td>
<td>−10 to +10 or −10.0 to +10.0 (Unit: °C [°F]) Varies with the setting of the Decimal point position. 0 or 0.0</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Identifier</td>
<td>Digits</td>
<td>Register address</td>
<td>Attribute</td>
<td>Data range</td>
<td>Factory set value</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------</td>
<td>------------</td>
<td>--------</td>
<td>------------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>25</td>
<td>Proportional cycle time [cool-side]</td>
<td>T1</td>
<td>6</td>
<td>0016</td>
<td>22</td>
<td>R/W</td>
<td>1 to 100 seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 to 100 seconds</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For “Cooling linear type”</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>configured to have</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>“Voltage pulse output”: 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Otherwise: 20</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>PV bias</td>
<td>PB</td>
<td>6</td>
<td>0017</td>
<td>23</td>
<td>R/W</td>
<td>–1999 or +9999 or –199.9 to +999.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Unit: °C [°F])</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Varies with the setting of the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Decimal point position.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Set data lock</td>
<td>LK</td>
<td>6</td>
<td>0018</td>
<td>24</td>
<td>R/W</td>
<td>RKC communication</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 to 15 (Decimal number)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The following binary number is</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>converted into a decimal number.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 0: Parameters in the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Parameter setting mode and the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Communication setting mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>excluding the Set value (SV)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and Alarm set values (ALM1,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ALM2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 1: Alarm set value (ALM1,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ALM2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 2: Set value (SV)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0: Unlock</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1: Lock</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 3: Initial setting mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0: Hide Initial setting mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1: Show Initial setting mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Show all parameters)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Modbus (Bit data)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 0: Parameters in the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Parameter setting mode and the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Communication setting mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>excluding the Set value (SV)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and Alarm set values (ALM1,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ALM2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 1: Alarm set value (ALM1,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ALM2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 2: Set value (SV)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0: Unlock</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1: Lock</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 3: Initial setting mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0: Hide Initial setting mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1: Show Initial setting mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Show all parameters)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 4 to 15: Unused</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[Decimal number: 0 to 15]</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>EEPROM mode</td>
<td>EB</td>
<td>6</td>
<td>001B</td>
<td>27</td>
<td>R/W</td>
<td>0: Backup mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set values are stored to the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EEPROM when set values are</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>changed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1: Buffer mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No set values are stored to the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EEPROM when set values are</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>changed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PID values and LBA time obtained</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>by AT or ST will be stored.</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Identifier</td>
<td>Digits</td>
<td>Register address</td>
<td>Attribute</td>
<td>Data range</td>
<td>Factory set value</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>------------</td>
<td>--------</td>
<td>-----------------</td>
<td>-----------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>29</td>
<td>EEPROM state</td>
<td>EM</td>
<td>6</td>
<td>001C</td>
<td>RO</td>
<td>0: The content of the EEPROM does not coincide with that of the RAM.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1: The content of the EEPROM coincides with that of the RAM.</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Interlock release</td>
<td>IR</td>
<td>6</td>
<td>003A</td>
<td>R/W</td>
<td>To release the interlock, write “0 (zero).”</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Value read during interlock state: 1</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Alarm 1 timer</td>
<td>TD</td>
<td>6</td>
<td>0075</td>
<td>R/W</td>
<td>0 to 600 seconds</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Data can be written only in STOP mode.</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Alarm 2 timer</td>
<td>TG</td>
<td>6</td>
<td>007C</td>
<td>R/W</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>Manipulated output value [heat-side]</td>
<td>O1</td>
<td>6</td>
<td>001D</td>
<td>RO</td>
<td>PID control: Output limiter low to Output limiter high</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heat/Cool PID control: –5.0 to Heat-side output limiter (high)</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Manipulated output value [cool-side]</td>
<td>O2</td>
<td>6</td>
<td>001E</td>
<td>RO</td>
<td>–5.0 to Cool-side output limiter (high)</td>
<td>—</td>
</tr>
<tr>
<td>35</td>
<td>Manipulated output ON/OFF state monitor [heat-side]</td>
<td>Q1</td>
<td>6</td>
<td>002D</td>
<td>RO</td>
<td>0: Output OFF</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1: Output ON</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Manipulated output ON/OFF state monitor [cool-side]</td>
<td>Q2</td>
<td>6</td>
<td>002E</td>
<td>RO</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>37</td>
<td>Instrument serial number monitor</td>
<td>RX</td>
<td>10</td>
<td>—</td>
<td>RO</td>
<td>Instrument serial number</td>
<td>—</td>
</tr>
<tr>
<td>38</td>
<td>Model code monitor</td>
<td>ID</td>
<td>32</td>
<td>—</td>
<td>RO</td>
<td>Model code (character)</td>
<td>—</td>
</tr>
<tr>
<td>39</td>
<td>ROM version monitor</td>
<td>Vr</td>
<td>6</td>
<td>—</td>
<td>RO</td>
<td>ROM version number</td>
<td>—</td>
</tr>
<tr>
<td>40</td>
<td>Peak hold monitor of ambient temperature</td>
<td>HP</td>
<td>6</td>
<td>—</td>
<td>RO</td>
<td>–120 to +120 °C</td>
<td>—</td>
</tr>
<tr>
<td>41</td>
<td>Integrated operating time (upper-digits)</td>
<td>UT</td>
<td>6</td>
<td>—</td>
<td>RO</td>
<td>0 to 9999 (x10000) hours</td>
<td>—</td>
</tr>
<tr>
<td>42</td>
<td>Integrated operating time (lower-digits)</td>
<td>UU</td>
<td>6</td>
<td>—</td>
<td>RO</td>
<td>0 to 9999 hours</td>
<td>—</td>
</tr>
<tr>
<td>43</td>
<td>Comprehensive alarm state</td>
<td>AJ</td>
<td>6</td>
<td>002F</td>
<td>RO</td>
<td>RKC communication</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Least significant digit: Alarm 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2nd digit: Alarm 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3rd digit: Heater break alarm 1 (HBA1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4th digit: Heater break alarm 2 (HBA2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5th digit to Most significant digit: Unused</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Data 0: OFF or No alarm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1: ON</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Identifier</td>
<td>Digits</td>
<td>Register address</td>
<td>Attribute</td>
<td>Data range</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>------------</td>
<td>--------</td>
<td>------------------</td>
<td>-----------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Comprehensive alarm state</td>
<td>AJ</td>
<td>6</td>
<td>002F 47</td>
<td>RO</td>
<td>Modbus (Bit data)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 0: Alarm 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 1: Alarm 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 2: Heater break alarm 1 (HBA1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 3: Heater break alarm 2 (HBA2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bit 4 to 15: Unused</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Data 0: OFF or No alarm 1: ON [Decimal number: 0 to 15]</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Output state monitor</td>
<td>Q3</td>
<td>6</td>
<td>0031 49</td>
<td>RO</td>
<td>RKC communication</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Least significant digit: Output 1 (OUT1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2nd digit: Output 2 (OUT2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3rd digit: Output 3 (OUT3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4th digit to Most significant digit: Unused</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Data 0: OFF 1: ON [Decimal number: 0 to 7]</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Operation mode state monitor</td>
<td>L0</td>
<td>6</td>
<td>0037 55</td>
<td>RO</td>
<td>RKC communication</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Least significant digit: STOP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2nd digit: RUN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3rd digit to Most significant digit: Unused</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Data 0: OFF 1: ON [Decimal number: 0 to 3]</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Identifier</td>
<td>Digits</td>
<td>Register address</td>
<td>Attribute</td>
<td>Data range</td>
<td>Factory set value</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>------------</td>
<td>--------</td>
<td>------------------</td>
<td>-----------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>46</td>
<td>Alarm 1 set value (ALM1) [low]</td>
<td>BT</td>
<td>6</td>
<td>004C 76</td>
<td>R/W</td>
<td>−1999 to +9999 or −199.9 to +999.9</td>
<td>−10 or −10.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Unit: °C [°F])</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Varies with the setting of the Decimal point position.</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Alarm 2 set value (ALM2) [low]</td>
<td>BU</td>
<td>6</td>
<td>004D 77</td>
<td>R/W</td>
<td>−1999 to +9999 or −199.9 to +999.9</td>
<td>−10 or −10.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Unit: °C [°F])</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Varies with the setting of the Decimal point position.</td>
<td></td>
</tr>
</tbody>
</table>
| 48 | Startup tuning (ST) | ST | 6 | 0053 83 | R/W | 0: ST unused
1: Execute once *
2: Execute always
* When the Startup tuning (ST) is finished, the control will automatically return to “0: ST unused.” | 0 |
| 49 | Fine tuning setting | CB | 6 | 0055 85 | R/W | −3 to +3
(0: Function OFF) | 0 |
| 50 | Minimum ON/OFF time of proportioning cycle [heat-side] | VI | 6 | 0058 88 | R/W | 0 to 1000 ms | 0 |
| 51 | Output limiter high [Heat-side output limiter (high)] | OH | 6 | 0059 89 | R/W | PID control: Output limiter low to 105.0 %
(Heat/Cool PID control: 0.0 to 105.0 %) | 105.0 |
| 52 | Output limiter low [Cool-side output limiter (high)] | OL | 6 | 005A 90 | R/W | PID control: −5.0 % to Output limiter high
(Heat/Cool PID control: −5.0 % to Output limiter high) | PID control: −5.0
Heat/Cool PID control: 105.0 |
| 53 | Minimum ON/OFF time of proportioning cycle [cool-side] | VJ | 6 | 005B 91 | R/W | 0 to 1000 ms | 0 |
| 54 | PV digital filter | F1 | 6 | 005D 93 | R/W | 0 to 100 seconds
(0: Digital filter function OFF) | 1 |
Data items for Initial setting mode

Data in the Initial setting mode becomes RO (Read only) during the RUN (control). To set the initial setting data, the controller must be set to STOP (control stop) using RUN/STOP transfer.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Identifier</th>
<th>Digits</th>
<th>Register address</th>
<th>Attribute</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
</table>
| 55 | Input type | XI | 6 | 0061 | R/W | 0: TC input K 7: TC input R
 | | | | | 1: TC input J 8: TC input S
 | | | | | 2: TC input L 9: TC input B
 | | | | | 3: TC input E 10: TC input W5Re/W26Re
 | | | | | 4: TC input N 11: TC input PLII
 | | | | | 5: TC input T 12: RTD input Pt100
 | | | | | 6: TC input U 13: RTD input JP100
 | | | | | When input range code is specified at the time of ordering, the input type in the input range code is the factory setting.
 | | | | | If input range code is not specified: 0
| 56 | Decimal point position | XU | 6 | 0062 | R/W | 0: No decimal place
 | | | | | 1: One decimal place
 | | | | | Setting below zero (first decimal place) is possible if the selected input type has a measured range with a decimal place.
 | | | | | When input range code is specified at the time of ordering, the decimal point position in the input range code is the factory setting.
 | | | | | If input range code is not specified: 0
| 57 | Input range high | XV | 6 | 0064 | R/W | (Input range low + 1 digit) to Measured range high
 | | | | | Varies with the setting of the Decimal point position.
 | | | | | When input range code is specified at the time of ordering, the input range high in the input range code is the factory setting.
 | | | | | If input range code is not specified: 400
| 58 | Input range low | XW | 6 | 0065 | R/W | Measured range low to (Input range high – 1 digit)
 | | | | | Varies with the setting of the Decimal point position.
 | | | | | When input range code is specified at the time of ordering, the input range low in the input range code is the factory setting.
 | | | | | If input range code is not specified: 0
| 59 | Setting limiter high | SH | 6 | 0066 | R/W | Setting limiter low to Input range high
 | | | | | Varies with the setting of the Decimal point position.
 | | | | | Input range high
| 60 | Setting limiter low | SL | 6 | 0067 | R/W | Input range low to Setting limiter high
 | | | | | Varies with the setting of the Decimal point position.
 | | | | | Input range low
| 61 | PV flashing display at input error | DU | 6 | 0068 | R/W | 0: Flashing display
 | | | | | 1: Non-flashing display
<pre><code> | | | | | 0 |
</code></pre>
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Identifier</th>
<th>Digits</th>
<th>Register address</th>
<th>Attribute</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>Action selection at STOP mode</td>
<td>SS</td>
<td>6</td>
<td>006A</td>
<td>R/W</td>
<td>RKC communication
Least significant digit: Alarm action
2nd digit: Heater break alarm (HBA) action
3rd digit to Most significant digit: Unused
Data
0: Alarm is cleared at STOP 1: Alarm remains on at STOP</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Modbus (Bit data)
Bit 0: Alarm action
Bit 1: Heater break alarm (HBA) action
Bit 2 to 15: Unused
Data
0: Alarm is cleared at STOP 1: Alarm remains on at STOP [Decimal number: 0 to 3]</td>
<td>00</td>
</tr>
<tr>
<td>63</td>
<td>Alarm 1 type</td>
<td>XA</td>
<td>6</td>
<td>0070</td>
<td>R/W</td>
<td>0: None
1: Deviation high
2: Deviation high/low
3: Process high
5: Deviation low
6: Band
7: Process low
9: Deviation high with re-hold action
10: Deviation high/low with re-hold action
11: Process high with hold action
13: Deviation low with re-hold action
15: Process low with hold action
16: Deviation high/low (High/Low individual setting)
17: Band (High/Low individual setting)
18: Deviation high/low with re-hold action (High/Low individual setting)
19: Deviation high with hold action
20: Deviation high/low with hold action
21: Deviation low with hold action
22: Deviation high/low with hold action (High/Low individual setting)
23: SV high
24: SV low
25: Monitor during RUN
Do not set 4, 8, 12, and 14.</td>
<td>When alarm code is specified at the time of ordering, the Alarm type in the alarm code is the factory setting. If Alarm type is not specified, factory setting depends on the specification (with or without outputs). If alarm output is assigned, Alarm type is “Deviation high.” If not assigned, Alarm type is “None.” For details, refer to 1.3 Model Code (P. 1-4).</td>
</tr>
<tr>
<td>64</td>
<td>Alarm 1 differential gap</td>
<td>HA</td>
<td>6</td>
<td>0072</td>
<td>R/W</td>
<td>0 to 9999 or 0.0 to 999.9
Unit: °C [°F]
Varies with the setting of the Decimal point position.</td>
<td>2 or 2.0</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Identifier</td>
<td>Digits</td>
<td>Register address</td>
<td>Attribute</td>
<td>Data range</td>
<td>Factory set value</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>------------</td>
<td>--------</td>
<td>------------------</td>
<td>-----------</td>
<td>--</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 65 | Alarm 1 action at input burnout | OA | 6 | 0073 | R/W | 0: Alarm output is not forcibly turned ON when the burnout function is activated.
1: ON at over-scale; no action at underscale
2: ON at underscale; no action at over-scale
3: ON at over-scale or underscale
4: OFF at over-scale or underscale | 3 |
| 66 | Output 1 (OUT1) energize/de-energize when assigned to alarm | ZI | 6 | 0074 | R/W | 0: Energize
1: De-energize (Contact CLOSE or OPEN, at STOP) *
2: De-energize (Contact OPEN, at STOP)
* If the controller is not in the alarm state at STOP, contact CLOSE. If the controller is in the alarm state at STOP, contact OPEN. | 0 |
| 67 | Alarm 1 interlock | LF | 6 | 0076 | R/W | 0: Unused
1: Used | 0 |
| 68 | Alarm 2 type | XB | 6 | 0077 | R/W | 0: None
1: Deviation high
2: Deviation high/low
3: Process high
5: Deviation low
6: Band
7: Process low
9: Deviation high with re-hold action
10: Deviation high/low with re-hold action
11: Process high with hold action
13: Deviation low with re-hold action
15: Process low with hold action
16: Deviation high/low (High/Low individual setting)
17: Band (High/Low individual setting)
18: Deviation high/low with re-hold action (High/Low individual setting)
19: Deviation high with hold action
20: Deviation high/low with hold action
21: Deviation low with hold action
22: Deviation high/low with hold action (High/Low individual setting)
23: SV high
24: SV low
25: Monitor during RUN
26: Control loop break alarm (LBA)
Do not set 4, 8, 12, and 14.
When alarm code is specified at the time of ordering, the Alarm type in the alarm code is the factory setting.
If Alarm type is not specified, factory setting depends on the specification (with or without outputs).
If alarm output is assigned, Alarm type is “Deviation high.” If not assigned, Alarm type is “None.”
For details, refer to 1.3 Model Code (P. 1-4). | |
| 69 | Alarm 2 differential gap | HB | 6 | 0079 | R/W | 0 to 9999 or 0.0 to 999.9 (Unit: °C [°F])
Varies with the setting of the Decimal point position. | 2 or 2.0 |
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Identifier</th>
<th>Digits</th>
<th>Register address</th>
<th>Attribute</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>Alarm 2 action at input burnout</td>
<td>OB</td>
<td>6</td>
<td>007A 122</td>
<td>R/W</td>
<td>0: Alarm output is not forcibly turned ON when the burnout function is activated. 1: ON at over-scale; no action at underscale 2: ON at underscale; no action at over-scale 3: ON at over-scale or underscale 4: OFF at over-scale or underscale</td>
<td>3</td>
</tr>
<tr>
<td>71</td>
<td>Output 2 (OUT2) energize/de-energize when assigned to alarm</td>
<td>NB</td>
<td>6</td>
<td>007B 123</td>
<td>R/W</td>
<td>0: Energize 1: De-energize (Contact CLOSE or OPEN, at STOP) * 2: De-energize (Contact OPEN, at STOP) * If the controller is not in the alarm state at STOP, contact CLOSE. If the controller is in the alarm state at STOP, contact OPEN.</td>
<td>0</td>
</tr>
<tr>
<td>72</td>
<td>Alarm 2 interlock</td>
<td>LG</td>
<td>6</td>
<td>007D 125</td>
<td>R/W</td>
<td>0: Unused 1: Used</td>
<td>0</td>
</tr>
<tr>
<td>73</td>
<td>CT1 ratio</td>
<td>XR</td>
<td>6</td>
<td>008C 140</td>
<td>R/W</td>
<td>1 to 1000 Set the following value depending on the CT type. CTL-6-P-N: 800 CTL-12-S56-10L-N: 1000</td>
<td>When CTL-6-P-N is specified at the time or ordering: 800 When CTL-12-S56-10L-N is specified at the time or ordering: 1000</td>
</tr>
<tr>
<td>74</td>
<td>CT2 ratio</td>
<td>XS</td>
<td>6</td>
<td>009D 157</td>
<td>R/W</td>
<td>1 to 1000 Set the following value depending on the CT type. CTL-6-P-N: 800 CTL-12-S56-10L-N: 1000</td>
<td>When CTL-6-P-N is specified at the time or ordering: 800 When CTL-12-S56-10L-N is specified at the time or ordering: 1000</td>
</tr>
<tr>
<td>75</td>
<td>HBA1 interlock</td>
<td>LN</td>
<td>6</td>
<td>009E 158</td>
<td>R/W</td>
<td>0: Unused 1: Used</td>
<td>0</td>
</tr>
<tr>
<td>76</td>
<td>HBA2 interlock</td>
<td>LO</td>
<td>6</td>
<td>009F 159</td>
<td>R/W</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>77</td>
<td>HBA determination time</td>
<td>EH</td>
<td>6</td>
<td>008D 141</td>
<td>R/W</td>
<td>0 to 255 seconds</td>
<td>3</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Identifier</td>
<td>Digits</td>
<td>Register address</td>
<td>Attribute</td>
<td>Data range</td>
<td>Factory set value</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------</td>
<td>------------</td>
<td>--------</td>
<td>------------------</td>
<td>-----------</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| 78 | Control action | XE | 6 | 00A0 160 | R/W | 0: PID control
1: Heat/Cool PID control | When control action is specified at the time of ordering, the ordered code for control action is the factory setting. If control action is not specified, factory setting depends on the specification (with or without outputs). For details, refer to 1.3 Model Code (P. 1-4). |
| 79 | Direct/Reverse action | CA | 6 | 008E 142 | R/W | 0: PID control: Direct action
1: PID control: Reverse action | When control action is specified at the time of ordering, the ordered code for control action is the factory setting. If Control action is not specified: 1 |
| 80 | Cool action | XQ | 6 | 008F 143 | R/W | 0: Heat/Cool PID control: Air cooling (for Extruder)
1: Heat/Cool PID control: Water cooling (for Extruder)
2: Heat/Cool PID control: Cooling linear type | When control action is specified at the time of ordering, the ordered code for control action is the factory setting. If Control action is not specified: 0 |
| 81 | ON/OFF action differential gap (upper) | IV | 6 | 0090 144 | R/W | 0 to 9999 or 0.0 to 999.9 (Unit: °C [°F])
Varies with the setting of the Decimal point position. | 1 or 1.0 |
| 82 | ON/OFF action differential gap (lower) | IW | 6 | 0091 145 | R/W | 0 to 9999 or 0.0 to 999.9 (Unit: °C [°F])
Varies with the setting of the Decimal point position. | 1 or 1.0 |
| 83 | Control output at burnout | WH | 6 | 0092 146 | R/W | 0: Result of control computation
1: PID control: Output limiter low (output OFF)
 Heat/Cool PID control: −5.0 % (output OFF) *
* Both heating and cooling outputs are forced OFF. | PID control: 0
Heat/Cool PID control: 1 |
| 84 | ST start condition | SU | 6 | 0097 151 | R/W | 0: Activate the ST function when the power is turned on; when transferred from STOP to RUN; or when the Set value (SV) is changed.
1: Activate the ST function when the power is turned on; or when transferred from STOP to RUN.
2: Activate the ST function when the Set value (SV) is changed. | 0 |
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Identifier</th>
<th>Digits</th>
<th>Register address</th>
<th>Attribute</th>
<th>Data range</th>
<th>Factory set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>STOP display selection</td>
<td>DX</td>
<td>6</td>
<td>009A 154</td>
<td>R/W</td>
<td>0: STOP on PV display 1: STOP on SV display</td>
<td>1</td>
</tr>
<tr>
<td>87</td>
<td>Output assignment of Alarm 1</td>
<td>E2</td>
<td>6</td>
<td>00A2 162</td>
<td>R/W</td>
<td>0: No assignment 1: Output 1 (OUT1) * 2: Output 2 (OUT2) * 3: Output 3 (OUT3)</td>
<td>When Alarm output assignment is specified at the time of ordering, the ordered output assignment is the factory setting. If Alarm output assignment is not specified, factory setting depends on the specification (with or without outputs). For details, refer to 1.3 Model Code (P. 1-4).</td>
</tr>
<tr>
<td>88</td>
<td>Output assignment of Alarm 2</td>
<td>E3</td>
<td>6</td>
<td>00A3 163</td>
<td>R/W</td>
<td>0: No assignment 1: Output 1 (OUT1) * 2: Output 2 (OUT2) * 3: Output 3 (OUT3) * If Output 1 or 2 (OUT1 or 2) is voltage pulse output or current output, assignment of Alarm output is ignored.</td>
<td>When Alarm output assignment is specified at the time of ordering, the ordered output assignment is the factory setting. If Alarm output assignment is not specified, factory setting depends on the specification (with or without outputs). For details, refer to 1.3 Model Code (P. 1-4).</td>
</tr>
<tr>
<td>89</td>
<td>Output assignment of Heater break alarm 1</td>
<td>E4</td>
<td>6</td>
<td>00A4 164</td>
<td>R/W</td>
<td>0: No assignment 1: Output 1 (OUT1) * 2: Output 2 (OUT2) * 3: Output 3 (OUT3)</td>
<td>When Heater break alarm output assignment is specified at the time of ordering, the ordered output assignment is the factory setting. If Heater break alarm output assignment is not specified: 0</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Identifier</td>
<td>Digits</td>
<td>Register address</td>
<td>Attribute</td>
<td>Data range</td>
<td>Factory set value</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>------------</td>
<td>--------</td>
<td>-----------------</td>
<td>-----------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>91</td>
<td>STOP function at Initial setting mode</td>
<td>DY</td>
<td>6</td>
<td>00A6</td>
<td>R/W</td>
<td>0: STOP in the Initial setting mode 1: RUN/STOP continues in the Initial setting mode</td>
<td>0</td>
</tr>
<tr>
<td>92</td>
<td>Show/Hide SV display</td>
<td>DZ</td>
<td>6</td>
<td>00A7</td>
<td>R/W</td>
<td>0: Show SV 1: Hide SV</td>
<td>0</td>
</tr>
<tr>
<td>93</td>
<td>Display mode selection</td>
<td>DW</td>
<td>6</td>
<td>00A8</td>
<td>R/W</td>
<td>0: Standard display mode 1: Expanded display mode</td>
<td>0</td>
</tr>
<tr>
<td>94</td>
<td>Temperature unit</td>
<td>PU</td>
<td>6</td>
<td>00A9</td>
<td>R/W</td>
<td>0: °C 1: °F</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>When input range code is specified at the time of ordering, the temperature unit in the input range code is the factory setting. If input range code is not specified: 0</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Output 3 (OUT3) energize/de-energize when assigned to alarm</td>
<td>NC</td>
<td>6</td>
<td>00AA</td>
<td>R/W</td>
<td>0: Energize 1: De-energize (Contact CLOSE or OPEN, at STOP) * 2: De-energize (Contact OPEN, at STOP) * If the controller is not in the alarm state at STOP, contact CLOSE. If the controller is in the alarm state at STOP, contact OPEN.</td>
<td>0</td>
</tr>
<tr>
<td>96</td>
<td>HBA1 state monitor</td>
<td>AE</td>
<td>6</td>
<td>0034</td>
<td>RO</td>
<td>0: OFF 1: ON</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>HBA2 state monitor</td>
<td>AF</td>
<td>6</td>
<td>0035</td>
<td>RO</td>
<td>0: OFF 1: ON</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Device address</td>
<td>JP</td>
<td>6</td>
<td>00AB</td>
<td>R/W</td>
<td>RKC communication: 0 to 99 Modbus: 1 to 99 RKC communication: 0 Modbus: 1</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Communication speed</td>
<td>JR</td>
<td>6</td>
<td>00AC</td>
<td>R/W</td>
<td>0: 2400 bps 1: 4800 bps 2: 9600 bps 3: 19200 bps 4: 38400 bps</td>
<td>2</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Identifier</td>
<td>Digits</td>
<td>Register address</td>
<td>Attribute</td>
<td>Data range</td>
<td>Factory set value</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------</td>
<td>------------</td>
<td>--------</td>
<td>------------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>100</td>
<td>Data bit configuration</td>
<td>IQ</td>
<td>6</td>
<td>00AD 173</td>
<td>R/W</td>
<td>Setting data bit configuration</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Data bit</td>
<td>Parity bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Without</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Without</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Even</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>Even</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>Odd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>Odd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>Even</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>Odd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>Even</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>Odd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>Without</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>Without</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Setting range of RKC communication: 0 to 11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Setting range of Modbus: 0, 1, 6, 7, 8, 9</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Interval time</td>
<td>IT</td>
<td>6</td>
<td>00AE 174</td>
<td>R/W</td>
<td>0 to 150 (× 1.666 ms)</td>
<td>5</td>
</tr>
<tr>
<td>102</td>
<td>Communication protocol</td>
<td>IS</td>
<td>6</td>
<td>00AF 175</td>
<td>R/W</td>
<td>0: RKC communication Protocol specified at the time of ordering.</td>
<td></td>
</tr>
</tbody>
</table>
This chapter describes error displays and countermeasures for errors.

13.1 Error Displays .. 13-2
13.2 Solutions for Problems .. 13-4
13.3 Verifying Instrument Information .. 13-12
13.1 Error Displays

This Section describes error display when the measured value (PV) exceeds the display range limit and the self-diagnostic error.

Input error displays

The table below shows displays, description, actions and solutions when the measured value (PV) exceeds the display range.

NOTE

Before replacing the sensor, always turn OFF the power of the RZ100/RZ400 or switch the mode to STOP with RUN/STOP transfer.

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
<th>Action (Output)</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured value (PV) [Flashing]</td>
<td>Measured value (PV) exceeds the input range. Display does not flash when “Non-flashing display” is set.</td>
<td>• Control output and Alarm output: Output is produced in the same way as under the normal state. Check input type, input range, sensor connection and sensor break.</td>
<td></td>
</tr>
<tr>
<td>0000 [Flashing]</td>
<td>Over-scaleMeasured value (PV) is above the display range limit high.</td>
<td>• Control output: Output is produced according to the “Control output at burnout” (P. 4-17, P. 6-10) • Alarm output: Output is produced according to the “Alarm action at burnout” (P. 4-15, P. 6-10)</td>
<td></td>
</tr>
<tr>
<td>0000 [Flashing]</td>
<td>UnderscaleMeasured value (PV) is below the display range limit low.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Minimum display limit is \(-1999\) or \(-199.9\)
2 Maximum display limit is \(+9999\) or \(+999.9\)
3 "Flashing display” or “Non-flashing display” of PV can be selected for the “PV flashing display at input error.”
4 Selection of “Alarm NOT forced to ON” at input burnout is possible at Selection of Alarm action at input burnout.
Self-diagnostic error

In an error is detected by the self-diagnostic function, the PV display shows “Err,” and the SV display shows the error code. If two or more errors occur simultaneously, the total summation of these error codes is displayed.

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
<th>Action</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Adjusted data error</td>
<td>Display: Error code display Output: All the outputs are OFF Communication: Possible</td>
<td>Turn off the power once. If the RZ100/400 is restored to normal after the power is turned on again, then probable cause may be external noise source affecting the control system. Check for the external noise source.</td>
</tr>
<tr>
<td>2</td>
<td>Data back-up error</td>
<td>[Example of error display]</td>
<td>If an error is repeated after the power is turned on again, the RZ100/400 may need to be repaired or replaced. Please contact RKC sales office or the agent.</td>
</tr>
<tr>
<td>4</td>
<td>A/D conversion error</td>
<td>[Example of error display]</td>
<td>If an error is repeated after the power is turned on again, the RZ100/400 may need to be repaired or replaced. Please contact RKC sales office or the agent.</td>
</tr>
</tbody>
</table>

If any of the following errors occur, all action of the RZ100/400 is stopped. In this case the error code is not displayed.

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
<th>Action</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Watchdog timer error</td>
<td>Display: All displays are OFF Output: All outputs are OFF Communication: Stopped</td>
<td>Turn off the power once. If an error is repeated after the power is turned on again, the RZ100/400 may need to be repaired or replaced. Please contact RKC sales office or the agent.</td>
</tr>
<tr>
<td></td>
<td>Power supply voltage is abnormal (power supply voltage monitoring)</td>
<td>Display: All displays are OFF Output: All outputs are OFF Communication: Stopped</td>
<td>If an error is repeated after the power is turned on again, the RZ100/400 may need to be repaired or replaced. Please contact RKC sales office or the agent.</td>
</tr>
</tbody>
</table>

[Example of error display]
13.2 Solutions for Problems

This section explains possible causes and solutions of the errors. For any inquiries or to confirm the specifications of the product, please contact RKC sales office or the agent.

If the instrument needs to replaced, always strictly observe the warnings below.

⚠️ WARNING

- To prevent electric shock or instrument failure, always turn off the system power before replacing the instrument.
- To prevent electric shock or instrument failure, always turn off the power before mounting or removing the instrument.
- To prevent electric shock or instrument failure, do not turn on the power until all wiring is completed. Make sure that the wiring is correct before applying power to the instrument.
- To prevent electric shock or instrument failure, do not touch the inside of the instrument.
- All wiring must be performed by authorized personnel with electrical experience in this type of work.

⚠️ CAUTION

All wiring must be completed before power is turned on to prevent electric shock, instrument failure, or incorrect action. The power must be turned off before repairing work for input break and output failure including replacement of sensor, contactor or SSR, and all wiring must be completed before power is turned on again.
Display related errors

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No display appears</td>
<td>The internal assembly is not inserted into the case correctly.</td>
<td>Insert the internal assembly into the case correctly.</td>
</tr>
<tr>
<td></td>
<td>Power supply terminal connection is not correct.</td>
<td>Connect power supply correctly by referring to 3.3 Wiring of Each Terminal (P. 3-7).</td>
</tr>
<tr>
<td></td>
<td>Power supply terminal contact failure.</td>
<td>Retighten the terminal screws.</td>
</tr>
<tr>
<td></td>
<td>Supply voltage is not correct.</td>
<td>Apply proper power supply voltage by referring to General specifications (P. 14-13).</td>
</tr>
<tr>
<td>Display is unstable</td>
<td>Noise source is present near the instrument.</td>
<td>Separate the noise source from the instrument. Set the appropriate value at Digital filter according to the input response.</td>
</tr>
<tr>
<td></td>
<td>The terminal block of the instrument (with thermocouple input) is directly exposed to the air flow from an air conditioner.</td>
<td>Do not directly expose the terminal block to the air from the air conditioner.</td>
</tr>
<tr>
<td>Measured value (PV) display differs from the actual value</td>
<td>Wrong sensor is used.</td>
<td>Check the instrument specification and use a proper sensor.</td>
</tr>
<tr>
<td></td>
<td>Input type setting is wrong.</td>
<td>Make proper setting by referring to 6.1 Changing Input (P. 6-2).</td>
</tr>
<tr>
<td></td>
<td>Connection between the sensor (thermocouple) and the instrument is made with a cable other than compensating wire.</td>
<td>Be sure to use a compensating wire.</td>
</tr>
<tr>
<td></td>
<td>For RTD input, leadwire resistance in three wires between the sensor and the instrument is different from one another.</td>
<td>Use a leadwire with the same resistance among three leadwires.</td>
</tr>
<tr>
<td></td>
<td>PV bias is set.</td>
<td>Set PV bias to “0” by referring to 6.2 Correcting Input (P. 6-7). Note: Attempt this only when the PV bias is allowed to turn off.</td>
</tr>
</tbody>
</table>

How to check the input

- **When the input is configured as Thermocouple input:**
 Short the input terminals (No.11 and 12), and if a temperature around the ambient temperature of the input terminals is displayed, the controller is working properly.

- **When the input is configured as RTD input:**
 Connect a 100 Ω resister between the input terminals No.10 and No.11, and short B-B (input terminals No.11 and 12). If the instrument shows a measured value around 0 °C (32 °F), the input function of the instrument is working correctly.
Control related errors

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control is abnormal</td>
<td>Supply voltage is not correct.</td>
<td>Apply proper power supply voltage by referring to [General specifications](P. 14-13).</td>
</tr>
<tr>
<td>Disconnection of sensor or sensor wire.</td>
<td></td>
<td>Turn off the power or STOP the operation by “RUN/STOP transfer” and repair the sensor or replace it.</td>
</tr>
<tr>
<td>The sensor is not wired correctly.</td>
<td></td>
<td>Conduct correct wiring of sensor by referring to [3.3 Wiring of Each Terminal](P. 3-7).</td>
</tr>
<tr>
<td>Wrong sensor is used.</td>
<td></td>
<td>Check the instrument specification and use a proper sensor.</td>
</tr>
<tr>
<td>Input type setting is wrong.</td>
<td></td>
<td>Make proper setting by referring to [6.1 Changing Input](P. 6-2).</td>
</tr>
<tr>
<td>Sensor insertion depth is insufficient.</td>
<td></td>
<td>Check the sensor insertion. If insertion is loose, firmly insert the sensor.</td>
</tr>
<tr>
<td>Sensor insertion position is wrong.</td>
<td></td>
<td>Insert the sensor at the specified location.</td>
</tr>
<tr>
<td>Input signal wires are not separated from instrument power and/or load wires.</td>
<td></td>
<td>Separate input signal wires from instrument power and load wires.</td>
</tr>
<tr>
<td>Noise source is present near the instrument.</td>
<td></td>
<td>Separate the noise source from the instrument.</td>
</tr>
<tr>
<td>Inappropriate PID constants.</td>
<td></td>
<td>Set appropriate PID constants.</td>
</tr>
<tr>
<td>Startup tuning (ST) cannot be activated</td>
<td>Startup tuning (ST) mode is “0 (ST unused).” (Factory set value: 0)</td>
<td>Refer to [11.4 Setting PID Values Automatically (Startup tuning)](P. 11-10).</td>
</tr>
<tr>
<td>Requirements for performing the Startup tuning (ST) are not satisfied.</td>
<td></td>
<td>Satisfy the requirements for performing the Startup tuning (ST) by referring to [11.4 Setting PID Values Automatically (Startup tuning)](P. 11-10).</td>
</tr>
<tr>
<td>Autotuning (AT) cannot be activated</td>
<td>Requirements for performing the Autotuning (AT) are not satisfied.</td>
<td>Satisfy the requirements for performing the Autotuning (AT) by referring to [11.3 Setting PID Values Automatically (Autotuning)](P. 11-8).</td>
</tr>
<tr>
<td>Autotuning (AT) aborted</td>
<td>Requirements for aborting the Autotuning (AT) are established.</td>
<td>Identify causes for Autotuning (AT) abort by referring to [11.3 Setting PID Values Automatically (Autotuning)](P. 11-8) and then remove them. Then, execute Autotuning (AT) again.</td>
</tr>
</tbody>
</table>

Continued on the next page.
Continued from the previous page.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimum PID values cannot be obtained by Autotuning (AT)</td>
<td>Autotuning (AT) does not match the characteristics of the controlled object.</td>
<td>Set PID constants manually by referring to [11.5 Setting PID Values Manually (P. 11-14)].</td>
</tr>
<tr>
<td>Autotuning (AT) cannot be finished normally</td>
<td>Temperature change of the process is too slow (1 °C or less per minute for temperature rise and fall).</td>
<td>Set PID constants manually by referring to [11.5 Setting PID Values Manually (P. 11-14)].</td>
</tr>
<tr>
<td></td>
<td>Autotuning (AT) was executed around the ambient temperature or close to the maximum temperature achieved by the load.</td>
<td></td>
</tr>
<tr>
<td>Measured value (PV) overshoots or undershoots</td>
<td>Proportional band is narrow. Proportional (P) constant is small.</td>
<td>Increase Proportional (P) value within the acceptable limit of response delay.</td>
</tr>
<tr>
<td></td>
<td>Integral time is short. Integral (I) constant is small.</td>
<td>Increase Integral (I) value within the acceptable limit of response delay.</td>
</tr>
<tr>
<td></td>
<td>Derivative time is short. Derivative (D) constant is small.</td>
<td>Increase Derivative (D) value within the acceptable limit of process stability.</td>
</tr>
<tr>
<td></td>
<td>The instrument is configured for ON/OFF control.</td>
<td>Change the control mode to Proportional control or PID control.</td>
</tr>
<tr>
<td>Output does not rise over (or goes below) a certain value</td>
<td>Output limiter is set.</td>
<td>Change the Output limiter setting by referring to [7.2 Limiting Output (P. 7-6)]. However, this is limited only to when the Output limiter setting can be changed.</td>
</tr>
</tbody>
</table>
Operation related errors

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No setting change can be made by key operation</td>
<td>Set data is locked.</td>
<td>Release the Set data lock by referring to 8.3 Restricting Key Operation (P. 8-7).</td>
</tr>
<tr>
<td>A set value (SV) above (or below) a certain limit cannot be set</td>
<td>Setting limiter is set.</td>
<td>Change the Setting limiter setting by referring to 8.1 Limiting the Setting Range of Set Value (SV) (P. 8-2). However, this is limited only to when the Setting limiter setting can be changed.</td>
</tr>
</tbody>
</table>

Alarm related errors

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm function is abnormal</td>
<td>Alarm function is different from the specification.</td>
<td>Change the Alarm action type by referring to 10.1.2 Changing alarm type (P. 10-8) after the instrument specification is confirmed.</td>
</tr>
<tr>
<td>Alarm output relay contact Energized/De-energize is reversed.</td>
<td></td>
<td>Check the setting details by referring to 7.4 Changing Alarm Output (Energize/De-energize) (P. 7-12).</td>
</tr>
<tr>
<td>Setting of Alarm differential gap is not appropriate.</td>
<td></td>
<td>Set an appropriate Alarm differential gap by referring to 10.1.3 Setting a differential gap in alarm action (P. 10-14).</td>
</tr>
<tr>
<td>Alarm output is not produced</td>
<td>Alarm function is not assigned.</td>
<td>Check the Output assignment by referring to 7.1 Changing Output Assignment (P. 7-2).</td>
</tr>
</tbody>
</table>
13. TROUBLESHOOTING

Control loop break alarm (LBA) related errors

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control loop break alarm (LBA) is not generated under the alarm condition.</td>
<td>LBA time setting is not appropriate.</td>
<td>Set an appropriate value by referring to 10.2 Using Control Loop Break Alarm (LBA) (P. 10-23).</td>
</tr>
<tr>
<td></td>
<td>LBA deadband (LBD) setting is not appropriate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Autotuning (AT) is in execution.</td>
<td>Wait for Autotuning (AT) to finish or abort Autotuning (AT).</td>
</tr>
<tr>
<td></td>
<td>The instrument stays in control stop (STOP).</td>
<td>Switch the mode to RUN (control) by referring to 11.1 Running/Stopping control (RUN/STOP transfer) (P. 11-2). Attempt this only when the mode is allowed to be transferred to RUN (control start).</td>
</tr>
<tr>
<td></td>
<td>LBA is not specified in Alarm type.</td>
<td>Set LBA by referring to 10.1.2 Changing alarm type (P. 10-8).</td>
</tr>
<tr>
<td></td>
<td>LBA does not match the characteristics of the process (controlled object).</td>
<td>Try another type of alarm.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control loop break alarm (LBA) is generated under the no alarm condition.</td>
<td>LBA time setting is not appropriate.</td>
<td>Refer to 10.2 Using Control Loop Break Alarm (LBA) (P. 10-23), and set a suitable value.</td>
</tr>
<tr>
<td></td>
<td>LBA deadband (LBD) setting is not appropriate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LBA does not match the characteristics of the process (controlled object).</td>
<td>Try another type of alarm.</td>
</tr>
</tbody>
</table>

Heater break alarm (HBA) related errors

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No heater break can be detected</td>
<td>Setting of Heater break alarm (HBA) is not appropriate.</td>
<td>Set an appropriate Heater break alarm (HBA) set value by referring to 10.3.2 Setting the Heater break alarm (HBA) set value (P. 10-38).</td>
</tr>
<tr>
<td></td>
<td>CT is not connected.</td>
<td>Connect CT by referring to 3.3 Wiring of Each Terminal (P. 3-7).</td>
</tr>
<tr>
<td>CT input value is abnormal</td>
<td>Wrong CT is used.</td>
<td>Check the instrument specification and use an appropriate CT.</td>
</tr>
<tr>
<td></td>
<td>Heater is broken.</td>
<td>Check the disconnected heater.</td>
</tr>
<tr>
<td></td>
<td>CT wiring is wrong.</td>
<td>Check CT wiring by referring to 3.3 Wiring of Each Terminal (P. 3-7).</td>
</tr>
<tr>
<td></td>
<td>Input terminal contact failure.</td>
<td>Retighten the terminal screws.</td>
</tr>
<tr>
<td>Heater break alarm (HBA) is not produced.</td>
<td>Heater break alarm (HBA) output is not assigned.</td>
<td>Check Output assignment by referring to 7.1 Changing Output Assignment (P. 7-2).</td>
</tr>
</tbody>
</table>
Communication related errors

RKC communication

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No response</td>
<td>Wrong connection, no connection or disconnection of the communication cable</td>
<td>Check connection and connect cable properly.</td>
</tr>
<tr>
<td></td>
<td>Disconnection, contact failure, or wrong connection of communication cable</td>
<td>Check wiring and connector. Repair or replace, if necessary.</td>
</tr>
<tr>
<td></td>
<td>Communication setting (communication speed, data bit configuration) is different from a host computer.</td>
<td>Check setting and make a proper setting.</td>
</tr>
<tr>
<td></td>
<td>Address setting is wrong.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data format is wrong.</td>
<td>Review communication program.</td>
</tr>
<tr>
<td></td>
<td>Transmission line is not set to receive state after data send.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication protocol setting is wrong.</td>
<td>Set Communication protocol to “0: RKC communication” by referring to 12.3 Setting (P. 12-8).</td>
</tr>
</tbody>
</table>

- **EOT return**
 - Invalid communication identifiers.
 - Data format is wrong.

- **NAK return**
 - Communication error occurred (parity bit error, framing error, etc.)
 - BCC error occurred
 - Data is out of the setting range.
 - Invalid communication identifiers.

Modbus

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No response</td>
<td>Wrong connection, no connection or disconnection of the communication cable</td>
<td>Check connection and connect cable properly.</td>
</tr>
<tr>
<td></td>
<td>Disconnection, contact failure, or wrong connection of communication cable</td>
<td>Check wiring and connector. Repair or replace, if necessary.</td>
</tr>
<tr>
<td></td>
<td>Communication setting (communication speed, data bit configuration) is different from a host computer.</td>
<td>Check setting and make a proper setting.</td>
</tr>
<tr>
<td></td>
<td>Address setting is wrong.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transmission error detected. (Overrun error, framing error, parity error, or CRC-16 error)</td>
<td>Retransmit after time-out or Review program on master side</td>
</tr>
</tbody>
</table>
Continued from the previous page.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No response</td>
<td>Time interval between data that consist a message is more than 24-bit time.</td>
<td>Retransmit after time-out or Review program on master side</td>
</tr>
<tr>
<td></td>
<td>Communication protocol setting is wrong.</td>
<td>Set Communication protocol to “1: Modbus” by referring to 12.3 Setting (P. 12-8).</td>
</tr>
<tr>
<td>Error code: 1</td>
<td>Function code error (unsupported function code specified)</td>
<td>Check function code.</td>
</tr>
<tr>
<td>Error code: 2</td>
<td>Unsupported address is specified.</td>
<td>Check holding register.</td>
</tr>
<tr>
<td>Error code: 3</td>
<td>Maximum number of reading data of holding register exceeded.</td>
<td>Check setting data.</td>
</tr>
</tbody>
</table>
13.3 Verifying Instrument Information

When error occurs and when you contact us, you are requested to provide us with the information on the instrument model code and specification. You can check the ROM version, model code and serial number of the instrument on the instrument display.

How to display the information

ROM version, Model code monitor and Serial number monitor can be set at Cod 0001 in the Initial setting mode.

Procedure to enter the Initial setting mode

- Press the key for 2 seconds or more while pressing the key to return to the PV/SV monitor screen.
- Set the highest digit of Set data lock to “0: Lock.”
- Next parameter is displayed.
- Set the “Display mode selection” at Cod 0003 in the Initial setting mode to “0: Standard display mode.”
- Press the key for 2 seconds or more while pressing the key to return to the PV/SV monitor screen.
- Set the “1: Expanded display mode”
- Press the SET key repeatedly till LCP appears
- Initial setting mode display

End of check

- Check ROM version
- Check Model code monitor
- Check Serial number monitor

13. TROUBLESHOOTING

IMR02Y05-E2

How to check

ROM Version

PV display: Version number
SV display: Running number

Model code monitor

Displays the model code of the instrument. As the Model code is too long to be displayed on a single screen, it can be scrolled left and right with [Cursor Left] and [Cursor Right] keys.

Example: Model code is RZ400-MNM * N

![Sequence of model code scrolling](image)

- The model code scrolls from the PV display unit to the SV display unit continuously over two screens.
- The Up key was pressed once.
- The displayed characters were scrolled one more digit to the left.
- The Up key was pressed once more.

Serial number monitor

Displays the serial number of the instrument. As the Serial number is too long to be displayed on a single screen, it can be scrolled left and right with [Cursor Left] and [Cursor Right] keys.

To read the displayed characters, refer to “**Character Symbols**” (P. i-3).

Alternatively, you can check the model code (MODEL), serial number (S/N) and suffix code (CODE) on the label on the side of the instrument if you are unable to check the information on the display.
This chapter describes Specifications.
Measured input

Number of input: 1 point

Input type:
 - PLII (NBS), W5Re/W26Re (ASTM-E988-96)
 - U, L (DIN43710-1985)
- RTD input: Pt100 (JIS-C1604-1997)

Input range:

<table>
<thead>
<tr>
<th>Input type</th>
<th>Measured range</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>−200 to +1372 °C, −199.9 to +400.0 °C, −199.9 to +800.0 °C</td>
</tr>
<tr>
<td></td>
<td>−328 to +2502 °F, −100.0 to +752.0 °F</td>
</tr>
<tr>
<td>J</td>
<td>−200 to +1200 °C, −199.9 to +300.0 °C</td>
</tr>
<tr>
<td></td>
<td>−328 to +2192 °F, −199.9 to +550.0 °F</td>
</tr>
<tr>
<td>T</td>
<td>−200 to +400 °C, −199.9 to +300.0 °C, −199.9 to +400.0 °C</td>
</tr>
<tr>
<td></td>
<td>−328 to +752 °F, −199.9 to +600.0 °F, −199.9 to +752.0 °F</td>
</tr>
<tr>
<td>S</td>
<td>0 to 1769 °C, 0 to 3216 °F</td>
</tr>
<tr>
<td>R</td>
<td>0 to 1769 °C, 0 to 3216 °F</td>
</tr>
<tr>
<td>E</td>
<td>0 to 1000 °C, 0 to 1832 °F</td>
</tr>
<tr>
<td>B</td>
<td>0 to 1820 °C, 0 to 3308 °F</td>
</tr>
<tr>
<td>N</td>
<td>0 to 1300 °C, 0 to 2372 °F</td>
</tr>
<tr>
<td>PLII</td>
<td>0 to 1390 °C, 0 to 2534 °F</td>
</tr>
<tr>
<td>W5Re/W26Re</td>
<td>0 to 2320 °C, 0 to 4208 °F</td>
</tr>
<tr>
<td>U</td>
<td>−200 to +600 °C, −199.9 to +600.0 °C</td>
</tr>
<tr>
<td></td>
<td>−328 to +1112 °F, −199.9 to +999.9 °F</td>
</tr>
<tr>
<td>L</td>
<td>0 to 900 °C, 0 to 1652 °F</td>
</tr>
</tbody>
</table>

RTD input (Measured range table)

<table>
<thead>
<tr>
<th>Input type</th>
<th>Measured range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt100</td>
<td>−200 to +649 °C, −199.9 to +649.0 °C</td>
</tr>
<tr>
<td></td>
<td>−328 to +1200 °F, −199.9 to +999.9 °F</td>
</tr>
<tr>
<td>JPt100</td>
<td>−200 to +649 °C, −199.9 to +649.0 °C</td>
</tr>
<tr>
<td></td>
<td>−328 to +1200 °F, −199.9 to +999.9 °F</td>
</tr>
</tbody>
</table>

Sampling cycle: 0.25 seconds

Influence of signal source resistance:
Approx. 0.2 μV/Ω (Converted depending on TC types)

Influence of input lead:
Approx. 0.02 %/Ω of span (Only RTD input)
10 Ω or less per wire
(When the value is 10 Ω or more, measuring range may be limited.)

Measured current:
Approx. 800 μA (Only RTD input)

Action at input break:
TC input: Upscale
RTD input: Upscale

Action at input short-circuit:
Downscale (Only RTD input)

Action at burnout:
Determination range of sensor burnout (high/low)
- High limit value: Measured range high + (5 % of Measured range)
- Low limit value: Measured range low − (5 % of Measured range)

Low and high limit values may be different from the above values depending on the input types.
Also used to determine the input break of alarm action.
Measured input correction:
- PV bias: \(-1999\) to \(+9999\) °C [°F] or \(-199.9\) to \(+999.9\) °C [°F]

PV digital filter (First order lag digital filter):
- 0 to 100 seconds (0: Filter OFF)

Current transformer (CT) input

- **Number of input:** 2 points
- **CT type:** CTL-6-P-N or CTL-12-S56-10-N (Sold separately)
- **Measurable current range:**
 - 0.0 to 30.0 A (CTL-6-P-N)
 - 0.0 to 100.0 A (CTL-12-S56-10L-N)
- **Sampling cycle:** 0.5 seconds
- **Voltage of through current:** 300 V or less

Output

- **Assign output:**
 - **Number of outputs:** 3 points (OUT1 to OUT3)
 - **Output assignment:**
 - Output assignment function enables the assignment of control, alarm or HBA functions to each output port.

If alarm or HBA output is assigned to the output where control output is already assigned, the alarm or the HBA output, which is assigned later, will be disabled.

Output assignment table

<table>
<thead>
<tr>
<th>Output specification</th>
<th>OUT1</th>
<th>OUT2</th>
<th>OUT3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control output (heat-side)</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Control output (cool-side)</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Alarm 1 output</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Alarm 2 output</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>HBA1 output</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>HBA2 output</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

- **OUT1**
 - This output port can be assigned with the following functions: Control output (heat-side), Control output (cool-side), Alarm 1 output, Alarm 2 output, HBA1 output and HBA2 output.

- **OUT2**
 - This output port can be assigned with the following functions: Control output (heat-side), Control output (cool-side), Alarm 1 output, Alarm 2 output, HBA1 output and HBA2 output.

- **OUT3**
 - This output port can be assigned with the following functions: Control output (cool-side), Alarm 1 output, Alarm 2 output, HBA1 output and HBA2 output.
Function assignment:

Function assignment table

<table>
<thead>
<tr>
<th>Output type</th>
<th>Control output (heat-side)</th>
<th>Control output (cool-side)</th>
<th>Alarm 1 output</th>
<th>Alarm 2 output</th>
<th>HBA1 output</th>
<th>HBA2 output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay contact output (1) ★</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay contact output (2) ★</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay contact output (3)</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage pulse output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current output 4 to 20 mA 0 to 20 mA</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

★ Relay contact output (1): OUT1, OUT2 and OUT3 of RZ100: Control output
OUT3 of RZ400: Control output
★ Relay contact output (2): OUT2 and OUT3 of RZ400: Control output

- OUT1, OUT2
 For control output (heat-side) and control output (cool-side), any one of Relay output (1) or (2), Voltage pulse output, or Current output can be assigned to this port respectively. For Alarm 1 output, Alarm 2 output, HBA1 output, HBA2 output, only Relay output (3) can be assigned.

- OUT3
 Control output (cool-side) is limited to relay output (1). For Alarm 1 output, Alarm 2 output, HBA1 output, or HBA2 output, only Relay output (3) is assignable.

Output type:

- Relay contact output (1)
 (OUT1 to OUT3 of RZ100: Control output,
 OUT3 of RZ400: Control output)
 Contact type: 1a contact
 Contact rating (Resistive load): AC 250 V 3 A, DC 30 V 1 A
 Electrical life: 100,000 times or more (Rated load)
 Mechanical life: 20 million times or more (Switching: 300 times/min)
 Time proportional cycle: 1 to 100 seconds (When control output is selected)

- Relay contact output (2)
 (OUT1 and OUT2 of RZ400: Control output)
 Contact type: 1a contact
 Contact rating (Resistive load): AC 250 V 3 A, DC 30 V 1 A
 Electrical life: 300,000 times or more (Rated load)
 Mechanical life: 50 million times or more (Switching: 180 times/min)
 Time proportional cycle: 1 to 100 seconds (When control output is selected)

- Relay contact output (3)
 (RZ100/RZ400: Alarm output [including HBA output])
 Contact type: 1a contact
 Contact rating (Resistive load): AC 250 V 1 A, DC 30 V 0.5 A
 Electrical life: 150,000 times or more (Rated load)
 Mechanical life: 20 million times or more (Switching: 300 times/min)

- Voltage pulse output
 Output voltage: 0/12 V DC (Rated)
 ON voltage: 10 to 13 V
 OFF voltage: 0.5 V or less
 Allowable load resistance: 500 Ω or more
 Time proportional cycle: 1 to 100 seconds (When control output is selected)
• **Current output**
 Output current (Rated): 4 to 20 mA DC, 0 to 20 mA DC
 Output range: 3.2 to 20.8 mA DC, 0 to 21 mA DC
 Allowable load resistance: 500 Ω or less

• **Control output at burnout**
 0: Result of control computation
 1: PID control: Output limiter low (output OFF)
 Heat/Cool PID control: -5.0 % (output OFF) *
 * Both heat-side and cool-side outputs are forced OFF

Related function:
• **Control output assignment**

 PID control specification:
 Control output (heat-side) can be assigned to either OUT1 or OUT2.

 Heat/Cool PID control specification:
 Control output (heat-side) can be assigned to either OUT1 or OUT2.
 Control output (cool-side) can be assigned to any one of OUT, OUT2 or OUT3.

 If Alarm output is assigned to the output where Control output is already assigned, the Alarm output, which is assigned later, will be disabled.

• **Alarm output assignment**
 Alarm output can be assigned to any one of OUT1, OUT2 or OUT3.

 If Control output is assigned to the output where Alarm output is already assigned, the Alarm output will be disabled.

• **HBA output assignment**
 Heater break alarm (HBA) can be assigned to any one of OUT1, OUT2 or OUT3.

 If HBA output is assigned to the output where Control output is already assigned, the HBA output will be disabled.

• **Output energize/de-energize when assigned to alarm**
 Energize/De-energize is selectable
Performance (at the ambient temperature 23 ±2 °C)

Reference performance (Performance under the standard performance condition)

- **Measured input:**

<table>
<thead>
<tr>
<th>Input type</th>
<th>Input range</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>K, J, T, PLII, E, U, L</td>
<td>Less than −100 °C</td>
<td>±(2.0 °C + 1 digit)</td>
</tr>
<tr>
<td>(Accuracy is not guaranteed for less than −100 °C)</td>
<td>−100 °C or more, Less than +500 °C</td>
<td>±(1.0 °C + 1 digit)</td>
</tr>
<tr>
<td></td>
<td>500 °C or more</td>
<td>±(0.2 % of Reading + 1 digit)</td>
</tr>
<tr>
<td>N, S, R, W5Re/W26Re</td>
<td>Less than 0 °C</td>
<td>±(4 °C ± 1 digit)</td>
</tr>
<tr>
<td>(Accuracy is not guaranteed for less than 400 °C for input type S, R and W5Re/W26Re)</td>
<td>0 °C or more, Less than 1000 °C</td>
<td>±(2 °C ± 1 digit)</td>
</tr>
<tr>
<td></td>
<td>1000 °C or more</td>
<td>±(0.2 % of Reading + 1 digit)</td>
</tr>
<tr>
<td>B</td>
<td>Less than 400 °C</td>
<td>±(70 °C ± 1 digit)</td>
</tr>
<tr>
<td>(Accuracy is not guaranteed for less than 400 °C)</td>
<td>400 °C or more</td>
<td>±(2 °C ± 1 digit)</td>
</tr>
<tr>
<td>Pt100, Jp100</td>
<td>Less than 200 °C</td>
<td>±(0.4 °C ± 1 digit)</td>
</tr>
<tr>
<td></td>
<td>200 °C or more</td>
<td>±(0.2 % of Reading + 1 digit)</td>
</tr>
</tbody>
</table>

Display accuracy:

Is equal to the above accuracy with the value below the minimum resolution rounded up.

Noise elimination ratio:

- Series mode: 60 dB or more (50/60 Hz)
- Common mode: 120 dB or more (50/60 Hz)

Resolution: 65535 counts (Performance of A/D converter)

Cold-junction temperature compensation error:

±0.5 °C (Between −10 to +55 °C)

Close horizontal mounting error:

±1.5 °C (within ±3.0 °C for input lower than −100 °C)

- **Current transformer (CT) input:**

 - Accuracy: ± (5 % of Reading) or ±2 A (whichever is larger)
 - Resolution: CTL-6-P-N: 1/5000
 - CTL-12-SS6-10L-N: 1/10000

- **Current output:**

 - Accuracy: ±5.0 % of Output span
 - Resolution: Approx. 1/15000

Operating influence (Variation under the operating condition)

- **Influence ambient temperature:**

 - Input: Measured input: ±0.06 °C/°C
 - Output: Current output: ±0.02 %/°C of Output span

- **Influence of physical orientation:**

 - Input: ±0.6 % of Input span or ±3.0 °C
 - These errors are added to the accuracy.
 - Output: Current output: Less than ±0.3 % of Output span
 - These errors are added to the accuracy.
14. SPECIFICATIONS

Display

Measured input display:
4-digit 7-segment LED (Green)

Display range:
- Measured range low – (5 % of Measured range) to
- Measured range high + (5 % of Measured range)
- The display starts flashing when the input exceeds the input range.
- The display starts flashing “oooo” when the input exceeds the display range.
- The display starts flashing “uuuu” when the input goes below the display range.

Setting display:
4-digit 7-segment LED (Orange)

Output display (OUT1 to OUT3):
Point light emission LED (Green): 3 points

Display action:
- When ON/OFF output:
 - Output OFF: Extinguished
 - Output ON: Lit
- When Current output:
 - 0.0 % ≥ Manipulated output: Extinguished
 - 0.0 % < Manipulated output < 100.0 %: Dimly lit.
 - 100.0 % ≤ Manipulated output: Lit

Autotuning state display (AT):
Point light emission LED (Green)

Display action:
- Flashes when Autotuning (AT) is activated.
- Lights during Startup tuning (ST) execution.

Alarm state display (ALM):
Point light emission LED (Red):

Display action:
- Lights when Comprehensive alarm state occurs.

Operation keys

Select items/Set parameters:
4 keys (, , ,)

RUN/STOP transfer:
Press and hold the key (for one second)
Control

PID control

Overshoot suppression function: Anti-reset windup (ARW) method

Proportional band: TC/RTD inputs:
- 0 (0.0) to Input span (Unit: °C [°F])
 - If the input span exceeds 9999 (999.9) °C [°F], the maximum value is 9999 (999.9) °C [°F].
 - 0 (0.0): ON/OFF action

Integral time: 0 to 3600 seconds (0: PD action)
 - Output is 50 % when the deviation is zero.

Derivative time: 0 to 3600 seconds (0: PI action)

Anti-reset windup (ARW):
- 0 to 100 % of Proportional band
 - (0: Integral action OFF)

ON/OFF action differential gap:
- 0 to 9999 or 0.0 to 999.9 (Unit: °C [°F])
 - High/Low individual setting

Proportional cycle time: 1 to 100 seconds
 - Valid at Relay contact output and Voltage pulse output

Output limiter high:
- Output limiter low to +105.0 % *

Output limiter low:
- −5.0 % to Output limiter high *
 - * Output limiter high > Output limiter low

Fine tuning:
- −3 to +3 (0: Function OFF)
 - Positive values quicken the control response while negative values slow the control response.

Direct/Reverse action: Selectable

Heat/Cool PID control

Overshoot suppression function: Anti-reset windup (ARW) method

Proportional band [heat-side]:

TC/RTD inputs:
- 0 (0.0) to Input span (Unit: °C [°F])
 - If the input span exceeds 9999 (999.9) °C [°F], the maximum value is 9999 (999.9) °C [°F].
 - 0 (0.0): Heat-side and cool-side are both ON/OFF action

Integral time: 0 to 3600 seconds (0: PD action)
 - Output is 0 % when the deviation is zero.

Derivative time: 0 to 3600 seconds (0: PI action)

Anti-reset windup (ARW):
- 0 to 100 % of Proportional band [heat-side]
 - (0: Integral action OFF)
Proportional band [cool-side]:
1 to 1000 % of Proportional band [heat-side]
This setting is disabled by setting the Proportional band to zero.
ON/OFF action of cool-side only is not possible.

Overlap/Deadband:
TC/RTD inputs: −10.0 to +10.0 (Unit: °C [°F])
Minus (−) setting results in overlap.
(However, the overlapping range is within the proportional range.)
This setting is disabled for ON/OFF control action.

Proportional cycle time [heat-side]:
1 to 100 seconds
Valid at Relay contact output and Voltage pulse output

Proportional cycle time [cool-side]:
1 to 100 seconds
Valid at Relay contact output and Voltage pulse output

Heat-side output limiter (high): 0.0 to 105.0 %

Cool-side output limiter (high): 0.0 to 105.0 %

Fine tuning: −3 to +3 (0: Function OFF)
Positive values quicken the control response while negative values slow the control response.

• Mode switching
RUN/STOP transfer:
Used to switch the mode between RUN and STOP.
When switching the mode from STOP to RUN, the action is the same as that at power on.
RUN: PID control is performed.
STOP: PID control and alarm function are disabled, and the output state will be as follows.
 Relay contact output: Opened
 Voltage pulse output: OFF
 Current output: −5.0 %
Action at STOP can be selected (Alarm or HBA)

• Autotuning (AT)
Tuning method: Computed by Limit cycle system
AT cycle: 1.5
AT differential gap time: 10 seconds

• Startup tuning (ST)
Selection of ST execution:
0: ST OFF
1: Execute once
2: Execute always
ST start condition:
0: Activate the ST function when the power is turned on; when transferred from STOP to RUN; or when the Set value (SV) is changed.
1: Activate the ST function when the power is turned on; or when transferred from STOP to RUN.
2: Activate the ST function when the Set value (SV) is changed.
Alarm function

Number of alarm: 2 points

Alarm type:
- Deviation high
- Deviation high with hold action
- Deviation high with re-hold action
- Deviation low
- Deviation low with hold action
- Deviation low with re-hold action
- Deviation high/low
- Deviation high/low with hold action
- Deviation high/low with re-hold action
- Deviation high/low (High/Low individual setting)
- Deviation high/low with hold action (High/Low individual setting)
- Deviation high/low with re-hold action (High/Low individual setting)
- Band
- Band (High/Low individual setting)
- Process high
- Process high with hold action
- Process low
- Process low with hold action
- SV high
- SV low
- Control loop break alarm (LBA)
- Monitor during RUN

Setting range:
- Alarm setting: -1999 to $+9999 \, ^\circ C$ or -199.9 to $+999.9 \, ^\circ C$
- Differential gap: 0 to $9999 \, ^\circ C$ or 0.0 to $999.9 \, ^\circ C$

Additional function:
- Hold action:
 a) without Hold function
 b) with Hold function (When power is turned on; when transferred from STOP to RUN)
 c) with Re-hold action (When power is turned on; when transferred from STOP to RUN; when SV changed)
- The hold function in b) is enabled for process alarm or deviation alarm.
- The re-hold function in c) is enabled for deviation alarm.

Alarm action at input burnout:
- 0: Alarm output is not forcibly turned ON when the burnout function is activated.
- 1: ON at over-scale; no action at underscale
- 2: ON at underscale; no action at over-scale
- 3: ON at over-scale or underscale
- 4: OFF at over-scale or underscale

Alarm timer: 0 to 600 seconds

Alarm interlock: Used/Unused is selectable

Energize/De-energize: Selectable

Control loop break alarm (LBA)

This function is enabled if Control loop break alarm (LBA) is specified for Alarm 2.

Control loop break alarm (LBA) time: 0.1 to 200.0 minutes

LBA deadband (LBD): 0 to 9999 (Unit: $^\circ C$)
14. SPECIFICATIONS

- **Heater break alarm (HBA)**
 - Number of HBA: 2 points (1 point per CT input)
 - Setting range: 0.0 to 100.0 A
 - (0.0: HBA function OFF [Current value monitoring is still available])
 - CT does not detect current value when the control output ON time or control output OFF time is less than 250 ms.
 - HBA determination time: 0 to 255 seconds
 - HBA interlock: Used/Unused is selectable

- **Comprehensive alarm**
 When alarm and HBA are generated, corresponding bits of Comprehensive alarm turn “1.”

 Alarm type and corresponding Bit:
 - Bit 0: When Alarm 1 is generated, “□” is lit (communication display: 1)
 - Bit 1: When Alarm 2 is generated, “□” is lit (communication display: 2)
 - Bit 2: When HBA 1 is generated, “□” is lit (communication display: 4)
 - Bit 3: When HBA 2 is generated, “□” is lit (communication display: 8)
 If two or more alarms are generated simultaneously, the communication display shows the sum of the alarms.

- **Communication**
 - **RKC communication**
 - Interface: Based on RS-485, EIA standard
 - Connection method: 2-wire system, half-duplex multi-drop connection
 - Synchronous method: Start/Stop synchronous type
 - Communication speed: 2400 bps, 4800 bps, 9600 bps, 19200 bps, 38400 bps
 - Protocol: ANSI X3.28-1976 subcategories 2.5 and A4
 - Polling/Selecting type
 - Data bit configuration:
 - Start bit: 1
 - Data bit: 7 or 8
 - Parity bit: Without, Odd or Even
 - Stop bit: 1 or 2
 - Error control:
 - Vertical parity (With parity bit selected)
 - Horizontal parity (BCC check)
 - Communication code: JIS/ASCII 7-bit code
 - Termination resistor: Externally terminal connected (120 Ω 1/2 W)
 - Xon/Xoff control: None
 - Maximum connections: Up to 31 controllers
 - Signal logic: RS-485
Signal logic	Logic
V (A) − V (B) ≥ 1.5 V	0 (SPACE)
V (A) − V (B) ≤ −1.5 V	1 (MARK)

 Voltage between V (A) and V (B) is the voltage of (A) terminal for the (B) terminal.
• Modbus
 Interface: Based on RS-485, EIA standard
 Connection method: 2-wire system, half-duplex multi-drop connection
 Synchronous method: Start/Stop synchronous type
 Communication speed: 2400 bps, 4800 bps, 9600 bps, 19200 bps, 38400 bps
 Data bit configuration:
 - Start bit: 1
 - Data bit: 8
 - Parity bit: Without, Odd or Even
 - Stop bit: 1 or 2
 Protocol: Modbus
 Signal transmission mode: Remote Terminal Unit (RTU) mode
 Function code:
 - 03H (Read holding registers)
 - 06H (Preset single register)
 - 08H (Diagnostics: loopback test)
 - 10H (Preset multiple registers [Write multiple registers])
 Error check method: CRC-16
 Error code:
 1: Function code error
 2: • When the mismatched address is specified.
 • Address other than 0000H to 00AFH is specified as the starting number.
 3: • The maximum number (Read from a read holding resistor or write to
 Preset multiple resistors [Write multiple registers]) has been exceeded.
 • The setting of the number of data (the number of requested byte) is not set
 to a double of the requested number of data at the time of “Preset multiple
 registers (Write multiple registers)”
 4: Self-diagnostic error response
 Termination resistor: Externally terminal connected (Example: 120 Ω 1/2 W)
 Maximum connections: Up to 31 controllers

Loader communication

Protocol: For RKC communication protocol only
 (ANSI X3.28-1976 subcategories 2.5 and A4)
 Synchronous method: Start/Stop synchronous type
 Communication speed: 38400 bps
 Data bit configuration:
 - Start bit: 1
 - Data bit: 8
 - Parity bit: Without
 - Stop bit: 1
 Maximum connections: 1 point (Only COM-K2)
 Connection method: COM-K2 loader cable (W-BV-01)
 Loader communication is enabled while the instrument is powered.
 Interval time: 10 ms
14. SPECIFICATIONS

■ Self-diagnostic function

Control stop (Error number is displayed [Operation: Possible]):
- Adjusted data error (Err 1)
- Data back-up error (Err 2)
- A/D conversion error (Err 4)
- Temperature compensation error (Err 4)

Action stop (Error number is not displayed [Operation: Impossible]):
- Power supply voltage is abnormal
- Watchdog timer error

■ General specifications

Power supply voltage: 85 to 264 V AC [Including power supply voltage variation], 50/60 Hz
(Rated: 100 to 240 V AC)
Frequency variation: 50 Hz (−10 to +5 %), 60 Hz (−10 to +5 %)

Power consumption (at maximum load):
- RZ100: 5.1 VA max. (at 100 V AC)
- 7.6 VA max. (at 240 V AC)
- RZ400: 5.9 VA max. (at 100 V AC)
- 8.4 VA max. (at 240 V AC)

Rush current:
- 5.6 A or less (at 100 V AC)
- 13.3 A or less (at 240 V AC)

Insulation resistance:

<table>
<thead>
<tr>
<th></th>
<th>□ Grounding</th>
<th>□ Power supply terminal</th>
<th>□ Measured input terminal</th>
<th>□ Output terminal</th>
<th>□ Communication terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Grounding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Power supply terminal</td>
<td>20 MΩ or more at 500V DC</td>
<td>20 MΩ or more at 500V DC</td>
<td>20 MΩ or more at 500V DC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Measured input terminal</td>
<td>20 MΩ or more at 500V DC</td>
<td>20 MΩ or more at 500V DC</td>
<td>20 MΩ or more at 500V DC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Output terminal</td>
<td>20 MΩ or more at 500V DC</td>
<td>20 MΩ or more at 500V DC</td>
<td>20 MΩ or more at 500V DC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Communication terminal</td>
<td>20 MΩ or more at 500V DC</td>
<td>20 MΩ or more at 500V DC</td>
<td>20 MΩ or more at 500V DC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grounding is done on the control panel.

Withstand voltage:

<table>
<thead>
<tr>
<th></th>
<th>□ Grounding</th>
<th>□ Power supply terminal</th>
<th>□ Measured input terminal</th>
<th>□ Output terminal (Relay contact)</th>
<th>□ Output terminal (Other than □)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Grounding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Power supply terminal</td>
<td>1500 V AC</td>
<td>3000 V AC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Measured input terminal</td>
<td>1500 V AC</td>
<td>3000 V AC</td>
<td>3000 V AC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Output terminal (Relay contact)</td>
<td>1500 V AC</td>
<td>3000 V AC</td>
<td>3000 V AC</td>
<td>1000 V AC</td>
<td></td>
</tr>
<tr>
<td>□ Output terminal (Other than □)</td>
<td>1500 V AC</td>
<td>3000 V AC</td>
<td>1000 V AC</td>
<td>3000 V AC</td>
<td>1000 V AC</td>
</tr>
<tr>
<td>□ Communication terminal</td>
<td>1500 V AC</td>
<td>3000 V AC</td>
<td>1000 V AC</td>
<td>3000 V AC</td>
<td>1000 V AC</td>
</tr>
</tbody>
</table>

Grounding is done on the control panel.
Power failure handling: **Power failure:** A power failure of 20 ms or less will not affect the control action (at Rated voltage)

Memory backup:
- Backed up by non-volatile memory
- Number of writing: Approx. 1,000,000 times
 - Depending on storage and operating conditions.
- Data storage period: Approx. 10 years

Power failure recovery: Restart the mode operated prior to the power failure.
- Outputs the computed result of the initial control sampling.
 - (within the Output limiter range)

Environment Condition

Operating environmental conditions

- **Ambient temperature:** −10 to +55 °C
- **Ambient humidity:** 5 to 95 %RH (Absolute humidity: MAX.W.C 29 g/m³ dry air at 101.3 kPa)
- **Vibration:**
 - Frequency range: 10 to 150 Hz
 - Maximum amplitude: 0.075 mm
 - Maximum acceleration: 9.8 m/s²
 - Each direction of XYZ axes
- **Shock:**
 - Free fall from 50 mm in height
 - Each direction of XYZ axes (In non-energization)

Reference operating conditions

- **Reference temperature:** 23 °C ± 2 °C
 - Temperature variation: ±5 °C/h
- **Reference humidity:** 50 %RH ± 10 %RH
- **Magnetic field:** Geomagnetism
- **Power supply voltage:** AC power supply Rated value ± 1 %

Transportation and Storage environment conditions

Vibration:

<table>
<thead>
<tr>
<th>Number of vibration [Hz]</th>
<th>Level [m²/s²]/Hz</th>
<th>Attenuation slope [dB/oct]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>3 to 6</td>
<td>-</td>
<td>+13.75</td>
</tr>
<tr>
<td>6 to 18</td>
<td>1.15</td>
<td>-</td>
</tr>
<tr>
<td>18 to 40</td>
<td>-</td>
<td>−9.34</td>
</tr>
<tr>
<td>40</td>
<td>0.096</td>
<td>-</td>
</tr>
<tr>
<td>40 to 200</td>
<td>-</td>
<td>−1.29</td>
</tr>
<tr>
<td>200</td>
<td>0.048</td>
<td>-</td>
</tr>
</tbody>
</table>

The effective value of the acceleration is 5.8 m/s² [0.59 g (1)] within the number of vibration.

NOTE: (1) \(g = 9.806658 \text{ m/s}^2 \)
14. SPECIFICATIONS

Shock: Height 400 mm or less
Temperature: −40 to +70 °C
Humidity: 5 to 95 %RH (Non condensing)
Absolute humidity: MAX.W.C 35 g/m³ dry air at 101.3 kPa

Mounting and Structure

Mounting method: Panel-mounted
Mounting orientation: Datum plane ± 90°
Case material: PC (Flame retardancy: UL94 V-0)
Front panel material: PC (Flame retardancy: UL94 V-0)
Terminal block material: PPE (Flame retardancy: UL94 V-1)
Panel sheet material: Polyester
Panel sealing: without waterproof and dustproof structure:
 Based on IP00 (IEC60529: 2001)
with waterproof and dustproof structure:
 Based on IP66 (IEC60529: 2001) [when properly mounted on the control panel]
 (Waterproof and dustproof structure is an optional function.)
Weight: RZ100: Approx. 115 g
 RZ400: Approx. 165 g
Dimensions: RZ100: 48 mm × 48 mm × 63 mm (W × H × D)
 RZ400: 48 mm × 96 mm × 60 mm (W × H × D)

Standard

Safety standards
UL: UL61010-1
cUL: CAN/CSA-C22.2 No.61010-1

Other approved standards
CE marking: LVD: EN61010-1
 EMC: EN61326-1
RCM: EN55011

Environment Condition
Protection against electric shock:
Class II (Reinforced insulation)
Overvoltage category: OVERVOLTAGE CATEGORY II
Pollution degree: POLLUTION DEGREE 2
Altitude: Altitude up to 2000 m (Indoor use)
A.1 Parameters to be Initialized/Changed at the time of changing set values ... A-2
 A.1.1 Data to be initialized ... A-2
 A.1.2 Data to be automatically converted .. A-5
A.2 Replacing the Waterproof/Dustproof Gasket (Optional) A-7
A.3 Current Transformer (CT) Dimensions (Optional) A-10
A.1 Parameters to be Initialized/Changed at the time of changing set values

If any of the following parameters are changed, the set values of relevant parameters are initialized or automatically converted according to the new setting. If not properly set, it may result in malfunction or failure of the instrument.

- Input type (INP) [Initial setting mode]
- Input range high (PGSH) [Initial setting mode]
- Input range low (PGSL) [Initial setting mode]
- Temperature unit (UNIT) [Initial setting mode]
- Input range high (PGSH) [Initial setting mode]
- Communication protocol (CMPS) [Communication setting mode]
- Decimal point position (PGdP) [Initial setting mode]
- Setting limiter high (SLH) [Initial setting mode]
- Setting limiter low (SLL) [Initial setting mode]
- Alarm 1 type (ALM1) [Initial setting mode]
- Setting limiter high (SLH) [Initial setting mode]
- Alarm 2 type (ALM2) [Initial setting mode]
- Setting limiter low (SLL) [Initial setting mode]
- Control action (XE) [Initial setting mode]

Before changing any parameter setting on the above list, always record all parameter settings in SV setting mode, Parameter setting mode, Communication setting mode and Initial setting mode. And after the change, always check all parameter settings in SV setting mode, Parameter setting mode, Communication setting mode and Initial setting mode by comparing them with the record taken before the change.

A.1.1 Data to be initialized

When Input type (INP) [Initial setting mode] is changed

The following parameter will be changed to factory default values according to the new setting.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Name</th>
<th>Symbol</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV setting mode</td>
<td>Set value (SV)</td>
<td></td>
<td>0 or 0.0</td>
</tr>
<tr>
<td>Parameter setting mode</td>
<td>Alarm 1 set value</td>
<td>RL 1</td>
<td>10 or 10.0</td>
</tr>
<tr>
<td></td>
<td>Alarm 1 set value [high]</td>
<td>RL 1'</td>
<td>−10 or −10.0</td>
</tr>
<tr>
<td></td>
<td>Alarm 2 set value</td>
<td>RL 2</td>
<td>10 or 10.0</td>
</tr>
<tr>
<td></td>
<td>Alarm 2 set value [high]</td>
<td>RL 2'</td>
<td>−10 or −10.0</td>
</tr>
<tr>
<td></td>
<td>Control loop break alarm (LBA) time</td>
<td>LbA</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>LBA deadband (LBD)</td>
<td>Lbd</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Proportional band [heat-side]</td>
<td>P</td>
<td>30 or 30.0</td>
</tr>
<tr>
<td></td>
<td>Integral time</td>
<td>I</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Derivative time</td>
<td>d</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Anti-reset windup (ARW)</td>
<td>Rr</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Proportional band [cool-side]</td>
<td>Pc</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Overlap/Deadband</td>
<td>db</td>
<td>0 or 0.0</td>
</tr>
<tr>
<td></td>
<td>PV bias</td>
<td>Pb</td>
<td>0 or 0.0</td>
</tr>
<tr>
<td></td>
<td>Fine tuning</td>
<td>Pu</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>PV digital filter</td>
<td>dF</td>
<td>1</td>
</tr>
<tr>
<td>Initial setting mode Cod0000</td>
<td>Decimal point position</td>
<td>PGdP</td>
<td>For TC inputs (T and U) and RTD inputs (Pt100 and JPt100): 1 Otherwise: 0</td>
</tr>
<tr>
<td></td>
<td>Input range high</td>
<td>PGSH</td>
<td>High-limit of measured range</td>
</tr>
<tr>
<td></td>
<td>Input range low</td>
<td>PGSL</td>
<td>Low-limit of measured range</td>
</tr>
<tr>
<td>Initial setting mode Cod1021</td>
<td>Setting limiter high</td>
<td>SLH</td>
<td>Input range high</td>
</tr>
<tr>
<td></td>
<td>Setting limiter low</td>
<td>SLL</td>
<td>Input range low</td>
</tr>
<tr>
<td>Initial setting mode Cod1041</td>
<td>Alarm 1 differential gap</td>
<td>RH 1</td>
<td>2 or 2.0</td>
</tr>
<tr>
<td></td>
<td>Alarm 1 timer</td>
<td>ALT 1</td>
<td>0</td>
</tr>
<tr>
<td>Initial setting mode Cod1042</td>
<td>Alarm 2 differential gap</td>
<td>RH 2</td>
<td>2 or 2.0</td>
</tr>
<tr>
<td></td>
<td>Alarm 2 timer</td>
<td>ALT 2</td>
<td>0</td>
</tr>
<tr>
<td>Initial setting mode Cod1051</td>
<td>ON/OFF action differential gap (upper)</td>
<td>oHH</td>
<td>1 or 1.0</td>
</tr>
<tr>
<td></td>
<td>ON/OFF action differential gap (lower)</td>
<td>oHL</td>
<td>1 or 1.0</td>
</tr>
</tbody>
</table>
When Input range high (PGSH) [Initial setting mode] is changed

The following parameter will be changed to factory default values according to the new setting.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Name</th>
<th>Symbol</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cod1021</td>
<td>Setting limiter high</td>
<td>SLH</td>
<td>Input range high</td>
</tr>
</tbody>
</table>

When Input range low (PGSL) [Initial setting mode] is changed

The following parameter will be changed to factory default values according to the new setting.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Name</th>
<th>Symbol</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cod1021</td>
<td>Setting limiter low</td>
<td>SLL</td>
<td>Input range low</td>
</tr>
</tbody>
</table>

When Temperature unit (Unit) [Initial setting mode] is changed

The following parameter will be changed to factory default values according to the new setting.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Name</th>
<th>Symbol</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV setting mode</td>
<td>Set value (SV)</td>
<td></td>
<td>0 or 0.0</td>
</tr>
<tr>
<td></td>
<td>Alarm 1 set value</td>
<td>AL1</td>
<td>10 or 10.0</td>
</tr>
<tr>
<td></td>
<td>Alarm 1 set value [high]</td>
<td>AL1'</td>
<td>–10 or –10.0</td>
</tr>
<tr>
<td></td>
<td>Alarm 2 set value</td>
<td>AL2</td>
<td>10 or 10.0</td>
</tr>
<tr>
<td></td>
<td>Alarm 2 set value [high]</td>
<td>AL2'</td>
<td>–10 or –10.0</td>
</tr>
<tr>
<td></td>
<td>Control loop break alarm (LBA) time</td>
<td>LBA</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>LBA deadband (LBD)</td>
<td>Lbd</td>
<td>0</td>
</tr>
<tr>
<td>Parameter setting mode</td>
<td>Proportional band [heat-side]</td>
<td>P</td>
<td>30 or 30.0</td>
</tr>
<tr>
<td></td>
<td>Integral time</td>
<td>I</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Derivative time</td>
<td>d</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Anti-reset windup (ARW)</td>
<td>Rr</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Proportional band [cool-side]</td>
<td>Pc</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Overlap/Deadband</td>
<td>db</td>
<td>0 or 0.0</td>
</tr>
<tr>
<td></td>
<td>PV bias</td>
<td>Pb</td>
<td>0 or 0.0</td>
</tr>
<tr>
<td></td>
<td>Fine tuning</td>
<td>PRu</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>PV digital filter</td>
<td>dF</td>
<td>1</td>
</tr>
<tr>
<td>Initial setting mode Cod0000</td>
<td>Input range high</td>
<td>PGSH</td>
<td>High-limit of measured range</td>
</tr>
<tr>
<td>Initial setting mode Cod1021</td>
<td>Setting limiter high</td>
<td>SLH</td>
<td>Input range high</td>
</tr>
<tr>
<td>Initial setting mode Cod1021</td>
<td>Setting limiter low</td>
<td>SLL</td>
<td>Input range low</td>
</tr>
<tr>
<td>Initial setting mode Cod1041</td>
<td>Alarm 1 differential gap</td>
<td>RH1</td>
<td>2 or 2.0</td>
</tr>
<tr>
<td></td>
<td>Alarm 1 timer</td>
<td>AL1</td>
<td>0</td>
</tr>
<tr>
<td>Initial setting mode Cod1042</td>
<td>Alarm 2 differential gap</td>
<td>RH2</td>
<td>2 or 2.0</td>
</tr>
<tr>
<td></td>
<td>Alarm 2 timer</td>
<td>AL2</td>
<td>0</td>
</tr>
<tr>
<td>Initial setting mode Cod1051</td>
<td>ON/OFF action differential gap (upper)</td>
<td>oHH</td>
<td>1 or 1.0</td>
</tr>
<tr>
<td></td>
<td>ON/OFF action differential gap (lower)</td>
<td>oHL</td>
<td>1 or 1.0</td>
</tr>
</tbody>
</table>
When Alarm type (\(ALM_i\)) [Initial setting mode] is changed

The following parameter will be changed to factory default values according to the new setting.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Name</th>
<th>Symbol</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter setting mode</td>
<td>Alarm 1 set value</td>
<td>(AL_1)</td>
<td>10 or 10.0</td>
</tr>
<tr>
<td>Initial setting mode Cod1041</td>
<td>Alarm 1 differential gap</td>
<td>(AH_1)</td>
<td>2 or 2.0</td>
</tr>
<tr>
<td></td>
<td>Alarm 1 timer</td>
<td>(AL_1)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Alarm 2 set value</td>
<td>(AL_2)</td>
<td>10 or 10.0</td>
</tr>
<tr>
<td></td>
<td>Alarm 2 set value [high]</td>
<td>(AL_2)</td>
<td>10 or 10.0</td>
</tr>
<tr>
<td></td>
<td>Alarm 2 set value [low]</td>
<td>(AL_2)</td>
<td>10 or 10.0</td>
</tr>
<tr>
<td></td>
<td>Alarm 2 differential gap</td>
<td>(AH_2)</td>
<td>2 or 2.0</td>
</tr>
<tr>
<td></td>
<td>Alarm 2 timer</td>
<td>(AL_2)</td>
<td>0</td>
</tr>
<tr>
<td>Initial setting mode Cod1042</td>
<td>Alarm 2 differential gap</td>
<td>(AH_2)</td>
<td>2 or 2.0</td>
</tr>
<tr>
<td></td>
<td>Alarm 2 timer</td>
<td>(AL_2)</td>
<td>0</td>
</tr>
</tbody>
</table>

When Control action (\(XE\)) [Initial setting mode] is changed

The following parameter will be changed to factory default values according to the new setting.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Name</th>
<th>Symbol</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter setting mode</td>
<td>Control loop break alarm (LBA) time</td>
<td>(LbA)</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>LBA deadband (LBD)</td>
<td>(Lbd)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Proportional band [heat-side]</td>
<td>(P)</td>
<td>30 or 30.0</td>
</tr>
<tr>
<td></td>
<td>Integral time</td>
<td>(i)</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Derivative time</td>
<td>(d)</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Anti-reset windup (ARW)</td>
<td>(Ar)</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Proportional band [cool-side]</td>
<td>(Pc)</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Overlap/Deadband</td>
<td>(db)</td>
<td>0 or 0.0</td>
</tr>
<tr>
<td></td>
<td>Fine tuning</td>
<td>(PTU)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Output limiter high [Heat-side output limiter (high)]</td>
<td>(oLH)</td>
<td>105.0</td>
</tr>
</tbody>
</table>
| | Output limiter low [Cool-side output limiter (high)] | \(oLL\) | PID control: -5.0
 | | | Heat/Cool PID control: +105.0 |
| Initial setting mode Cod0002 | Control output assignment | \(oCa\) | When Heat/Cool PID control is changed to PID control:
 | | | If the value before the change is 3: the new value is 1.
 | | | If the value before the change is 4: the new value is 2.
 | | | Other values remain unchanged. | |
| Initial setting mode Cod1051 | ON/OFF action differential gap (upper) | \(oHH\) | 1 or 1.0 |
| | ON/OFF action differential gap (lower) | \(oHL\) | 1 or 1.0 |
When Control output assignment (oCo) [Initial setting mode] is changed

The following parameter will be changed to factory default values according to the new setting.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Name</th>
<th>Symbol</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter setting mode</td>
<td>Proportional cycle time [heat-side]</td>
<td>(\tau)</td>
<td>Relay contact output: 20
Voltage pulse output: 2</td>
</tr>
<tr>
<td></td>
<td>Proportional cycle time [cool-side]</td>
<td>(t)</td>
<td>Relay contact output: 20
For “Air cooling/Water cooling” configured to have “Voltage pulse output”: 20
For “Cooling linear type” configured to have “Voltage pulse output”: 2
Otherwise: Not initialized</td>
</tr>
</tbody>
</table>

When Cool action (oSc) [Initial setting mode] is changed

The following parameter will be changed to factory default values according to the new setting.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Name</th>
<th>Symbol</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter setting mode</td>
<td>Proportional cycle time [cool-side]</td>
<td>(t)</td>
<td>For “Air cooling/Water cooling” configured to have “Voltage pulse output”: 20
For “Cooling linear type” configured to have “Voltage pulse output”: 2
Otherwise: Not initialized</td>
</tr>
</tbody>
</table>

A.1.2 Data to be automatically converted

When Decimal point position \((PGdP)\) [Initial setting mode] is changed

The following parameter will be automatically converted.

- Set value (SV)
- Alarm 1 set value
- Alarm 1 set value [high]
- Alarm 1 set value [low]
- Alarm 2 set value
- Alarm 2 set value [high]
- Alarm 2 set value [low]
- Proportional band [heat-side]
- Overlap/Deadband
- PV bias
- Input range high
- Input range low
- Setting limiter high
- Setting limiter low
- Alarm 1 differential gap
- Alarm 2 differential gap
- ON/OFF action differential gap (upper)
- ON/OFF action differential gap (lower)

For details of automatic conversion, refer to Example of automatic conversion (P. A-6).

When Input range high \((PGSH)\) [Initial setting mode] are changed

The following parameter will be automatically converted.

- Set value (SV)
- Proportional band [heat-side]
- Setting limiter low

For details of automatic conversion, refer to Example of automatic conversion (P. A-6).
When Input range low (PGSL) [Initial setting mode] are changed

The following parameter will be automatically converted.
- Set value (SV)
- Proportional band [heat-side]
- Setting limiter high

For details of automatic conversion, refer to Example of automatic conversion (P. A-6).

When Setting limiter high (SLH) or Setting limiter low (SLL) [Initial setting mode] are changed

The following parameter will be automatically converted.
- Set value (SV)

For details of automatic conversion, refer to Example of automatic conversion (P. A-6).

Example of automatic conversion
- Decimal point position moves in accordance with the setting change.

Example 1: When the setting of the Decimal point position (PGdP) is changed from 1 (One decimal place) to 0 (no decimal place) with Input range high (PGSH) set to 400.0 °C:

Values are rounded off to the decimal place.

Example 2: When the setting of the Decimal point position (PGdP) is changed from 0 (no decimal place) to 1 (One decimal place) with Input range high (PGSH) set to 1372 °C (Input type: thermocouple K):

For thermocouple K, the maximum settable value with one decimal place is 800.0 and the value cannot be larger than this.

- Values of parameters related to Input range high (PGSH) change automatically in accordance with the change in value of Input range high (PGSH).

Example: When Input range high (PGSH) is changed from 400 °C to 200 °C

If 300 °C is entered as a set value (SV), it is automatically converted to 200 °C.
A.2 Replacing the Waterproof/Dustproof Gasket (Optional)

RZ100/400 can be equipped with an optional water- and dust-proof structure, which has to be specified at the time of ordering. This waterproof and dustproof construction uses two types of rubber gaskets. If the waterproof and dustproof gasket deteriorates, please contact RKC sales office or the agent. To replace the gasket, take the following steps:

WARNING

- In order to prevent electric shock and instrument failure, always turn off the power supply before replacing the gasket.
- In order to prevent electric shock and instrument failure, always turn off the power supply before pulling out the internal chassis.
- In order to prevent injury or instrument failure, do not touch the internal printed wiring board.

Replacement of the gasket for the case

1. Turn the power OFF.
2. Remove the wiring.
3. Remove the mounting bracket, and then remove the instrument from the control panel.
4. Remove the old gasket, and then replace the old gasket with a new one.

![Gasket for the case: RZ100: KRB100-39 RZ400: KFB400-36](image)

- Old gasket
- New gasket

Gasket for the case:
- RZ100: KRB100-39
- RZ400: KFB400-36
Replacing the gasket for the front frame

1. Turn the power OFF.

2. Insert the slotted screwdriver into the case lock section as shown in the following figure, and then lightly turn the slotted screwdriver to release the case lock section. The case lock section is released.

3. The other case lock section should be released in the same way as described in steps 1 and 2.

4. Remove the internal assembly from the case.
5. Remove the old gasket, and then replace the old gasket with a new one.

![Diagram showing conversion from old gasket to new gasket]

Gasket for the front frame:
- RZ100: KFB100-35
- RZ400: KRB400-39

6. Insert the internal assembly in the case.
A.3 Current Transformer (CT) Dimensions (Optional)

- **CTL-6-P-N (For 0 to 30 A)**

 (Unit: mm)

 ![Diagram of CTL-6-P-N](image)

- **CTL-12-S56-10L-N (For 0 to 100 A)**

 (Unit: mm)

 ![Diagram of CTL-12-S56-10L-N](image)
INDEX [Alphabetical order]

A

<table>
<thead>
<tr>
<th>A/D conversion error</th>
<th>13-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACK (Acknowledgment)</td>
<td>12-14, 12-20</td>
</tr>
<tr>
<td>Action selection at STOP mode</td>
<td>4-6, 4-15, 10-46, 12-41</td>
</tr>
<tr>
<td>Adjusted data error</td>
<td>13-3</td>
</tr>
<tr>
<td>Adjusting PID parameters</td>
<td>11-16</td>
</tr>
<tr>
<td>Air cooling</td>
<td>11-5, 11-24</td>
</tr>
<tr>
<td>Alarm 1 action at input burnout</td>
<td>4-7, 4-15, 6-11, 12-42</td>
</tr>
<tr>
<td>Alarm 1 differential gap</td>
<td>4-7, 4-15, 10-14, 12-41</td>
</tr>
<tr>
<td>Alarm 1 interlock</td>
<td>4-7, 4-15, 10-19, 12-42</td>
</tr>
<tr>
<td>Alarm 1 set value (ALM1)</td>
<td>4-5, 4-10, 12-34</td>
</tr>
<tr>
<td>Alarm 1 set value (ALM1) [high]</td>
<td>4-5, 4-10, 12-34</td>
</tr>
<tr>
<td>Alarm 1 set value (ALM1) [low]</td>
<td>4-5, 4-10, 12-39</td>
</tr>
<tr>
<td>Alarm 1 state monitor</td>
<td>12-34</td>
</tr>
<tr>
<td>Alarm 1 timer</td>
<td>4-7, 4-15, 10-17, 12-37</td>
</tr>
<tr>
<td>Alarm 1 type</td>
<td>1-7, 4-5, 4-12, 10-12, 12-41</td>
</tr>
<tr>
<td>Alarm 2 action at input burnout</td>
<td>4-7, 4-15, 6-11, 12-43</td>
</tr>
<tr>
<td>Alarm 2 differential gap</td>
<td>4-7, 4-15, 10-14, 12-42</td>
</tr>
<tr>
<td>Alarm 2 interlock</td>
<td>4-7, 4-15, 10-19, 12-43</td>
</tr>
<tr>
<td>Alarm 2 set value (ALM2)</td>
<td>4-5, 4-10, 12-35</td>
</tr>
<tr>
<td>Alarm 2 set value (ALM2) [high]</td>
<td>4-5, 4-10, 12-35</td>
</tr>
<tr>
<td>Alarm 2 set value (ALM2) [low]</td>
<td>4-5, 4-10, 12-39</td>
</tr>
<tr>
<td>Alarm 2 state monitor</td>
<td>12-34</td>
</tr>
<tr>
<td>Alarm 2 timer</td>
<td>4-7, 4-15, 10-17, 12-37</td>
</tr>
<tr>
<td>Alarm 2 type</td>
<td>1-7, 4-5, 4-13, 10-12, 12-42</td>
</tr>
<tr>
<td>Allowable ambient humidity</td>
<td>2-2</td>
</tr>
<tr>
<td>Allowable ambient temperature</td>
<td>2-2</td>
</tr>
<tr>
<td>Anti-reset windup (ARW)</td>
<td>4-5, 4-10, 11-17, 11-25, 12-35</td>
</tr>
<tr>
<td>Autotuning (AT)</td>
<td>1-2, 1-10, 4-5, 4-10, 5-14, 11-8, 12-35, 14-9</td>
</tr>
</tbody>
</table>

B

Band	10-9
BCC (Block Check Character)	12-14
Burnout	5-2, 6-10, 13-2, 14-2
Burnout state monitor	12-34

C

Character Symbols	1-3	
Close horizontal mounting	2-3, 2-4	
COM-K2	1-2, 1-9, 12-2, 12-6, 12-7	
Communication interface	12-2	
Communication protocol	4-4, 4-9, 12-8, 12-47	
Communication response monitor	4-4, 4-9	
Communication setting mode	4-2, 4-4, 4-9, 12-8	
Communication speed	4-4, 4-9, 12-8, 12-46	
Communication Tool	12-2, 12-3	
Compensation wire	3-2	
Comprehensive alarm state	4-4, 4-8, 10-48, 12-37	
Control action	4-7, 4-16, 11-6, 11-26, 12-44	
Control loop break alarm (LBA) time	4-5, 4-10, 10-30, 12-35	
Control output assignment	1-7, 1-10, 4-6, 4-13, 7-3, 12-45	
Control output at burnout	4-7, 4-17, 6-11, 12-44	
Control state at the time of mode switching	8-5	
Cool action	4-7, 4-16, 11-6, 11-26, 12-44	
Cool control type	11-24	
Cooling linear type	11-5, 11-24	
Cool-side output limiter (high)	4-5, 4-11, 7-6, 12-39	
CRC calculation in the ‘C’ language	12-27	
CRC-16	12-25	
CT	CT (Current transformer for Heater break alarm)	1-3
CT1 ratio	4-7, 4-16, 10-40, 12-43	
CT2 ratio	4-7, 4-16, 10-40, 12-43	
Current transformer (CT)	10-38, 10-40, A-10	
Current transformer (CT) input	1-4, 1-10, 3-10, 14-3	
Current transformer 1 (CT1) input value monitor	4-4, 4-8, 12-34	
Current transformer 2 (CT2) input value monitor	4-4, 4-8, 12-34	
CTL-12-S56-10L-N	1-4, 3-10, 4-16, 10-40, 14-3, A-10	
CTL-6-P-N	1-4, 3-10, 4-16, 10-40, 14-3, A-10	

D

Data back-up error	13-3
Data bit configuration	4-4, 4-9, 12-8, 12-47
Data bit configuration table	12-8
DEC	12-33
Decimal point position	4-5, 4-12, 6-3, 12-40
Derivative action	11-15
Derivative time	4-5, 4-10, 11-17, 11-25, 12-35
Deviation action	10-8
Deviation high	10-8
Deviation high/low	10-9
Deviation low	10-8
Device address	4-4, 4-9, 12-8, 12-46
Diagnostics (Loopback test) [08H]	12-30
Dimly lit	4-4
Direct/Reverse action	4-7, 4-16, 11-6, 12-44
Display mode selection	4-6, 4-14, 9-3, 12-46
Display range limit	6-10, 13-2
Downscale	5-2, 14-2

E

EEPROM mode	12-36
EEPROM state	12-37
ENQ	12-13
INDEX

EOT .. 12-14, 12-15, 12-20
Error check .. 12-22
Error code .. 12-34
ETX ... 12-14
Expanded display mode 4-4, 4-8, 9-2

F
Fail-safe .. 12-11
Fine tuning ... 1-2, 4-5, 4-11, 11-29, 12-39, 14-8
Flashing .. 6-10, 13-2
Front cover .. 1-3
Function code 12-22, 12-23
Fuse ... i-2, 3-2

G
Gasket (for the case) 1-3, 2-3, A-7

H
HBA
HBA determination time 4-7, 4-16, 10-42, 12-43
HBA1 interlock 4-7, 4-16, 10-44, 12-43
HBA1 state monitor 12-46
HBA2 interlock 4-7, 4-16, 10-44, 12-43
HBA2 state monitor 12-46
Heater Break Alarm (HBA) 10-32
Heater break alarm 1 (HBA1) set value 4-5, 4-10, 10-38, 12-35
Heater break alarm 2 (HBA2) set value 4-5, 4-10, 10-38, 12-35
Heat/Cool PID control 1-4, 4-16, 11-5
Heat-side output limiter (high) 4-5, 4-11, 7-6, 12-39
HEX ... 12-33
Highlighted 4-4, 4-18, 5-12, 5-13
Hold action ... 5-3, 10-10
Host communication 12-2
How to check the input 13-5

I
Identifier .. 12-13, 12-19, 12-33
Individual mounting 2-3, 2-4
Initial setting code 0000 4-5, 4-12
Initial setting code 0001 4-6, 4-13
Initial setting code 0002 4-6, 4-13
Initial setting code 0003 4-6, 4-14
Initial setting code 1021 4-6, 4-14
Initial setting code 1030 4-6, 4-15
Initial setting code 1041 4-7, 4-15
Initial setting code 1042 4-7, 4-15
Initial setting code 1045 4-7, 4-16
Initial setting code 1051 4-7, 4-16
Initial setting code 1052 4-7, 4-17
Initial setting mode 4-2, 4-5, 4-12
Input range code table 1-6, 6-5
Input range high 4-5, 4-12, 6-3, 12-40
Input range low 4-5, 4-12, 6-4, 12-40
Input type ... 4-5, 4-12, 6-3, 12-40
Input type symbol 4-5, 4-12
Input value action 10-9
Installation environment conditions 2-2
Instrument serial number monitor 4-6, 4-13, 12-37, 13-13
Integral action 11-15
Integral time 4-5, 4-10, 11-17, 11-25, 12-35
Integrated operating time (lower-digits) 4-6, 4-13, 12-37
Integrated operating time (upper-digits) 4-6, 4-13, 12-37
Interlock release 4-4, 4-8, 10-22, 12-37
Interval time 4-4, 4-9, 12-8, 12-47
IP66 ... 1-2, 14, 2-6, 14-15
Isolation block 3-6
Isolations of input and output 3-6

L
LBA
Control loop break alarm (LBA) time 4-5, 4-10, 10-30, 12-35
LBA deadband (LBD) 4-5, 4-10, 10-30, 12-35
LBD differential gap 10-29
Loader communication 1-2, 1-9, 1-10, 12-2, 12-7, 14-12
Loopback test 12-30

M
Manipulated output ON/OFF state monitor [cool-side] 12-37
Manipulated output ON/OFF state monitor [heat-side] 12-37
Manipulated output value [cool-side] 4-4, 4-8, 7-15, 12-37
Manipulated output value [heat-side] 4-4, 4-8, 7-15, 12-37
Maximum display limit 6-10, 13-2
Measured range table 6-5, 14-2
Measured value (PV) monitor 12-34
Minimum display limit 6-10, 13-2
Minimum ON/OFF time of proportioning cycle [cool-side] 4-5, 4-11, 7-10, 12-39
Minimum ON/OFF time of proportioning cycle [heat-side] 4-5, 4-11, 7-9, 12-39
Model code monitor 4-6, 4-13, 12-37, 13-13
Monitor display mode 4-2, 4-4, 4-8
Monitor during RUN 10-10
Mounting bracket 2-4, 2-5, 2-6, 2-7
Multi-drop connection 12-2
<table>
<thead>
<tr>
<th>N</th>
<th>NAK (Negative acknowledge)</th>
<th>12-15, 12-20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No response</td>
<td>12-14, 12-15, 12-20</td>
</tr>
<tr>
<td></td>
<td>Noise filter</td>
<td>3-2</td>
</tr>
<tr>
<td>O</td>
<td>ON/OFF action</td>
<td>4-10, 11-4, 11-19</td>
</tr>
<tr>
<td></td>
<td>ON/OFF action differential gap (lower)</td>
<td>4-7, 4-16, 11-21, 12-44</td>
</tr>
<tr>
<td></td>
<td>ON/OFF action differential gap (upper)</td>
<td>4-7, 4-16, 11-21, 12-44</td>
</tr>
<tr>
<td></td>
<td>Operation at power failure</td>
<td>5-3</td>
</tr>
<tr>
<td></td>
<td>Operation mode state monitor</td>
<td>12-38</td>
</tr>
<tr>
<td></td>
<td>Outline of effect of PID</td>
<td>11-16</td>
</tr>
<tr>
<td></td>
<td>Output 1 (OUT1) energize/de-energize when assigned to alarm</td>
<td>4-6, 4-14, 7-12, 12-42</td>
</tr>
<tr>
<td></td>
<td>Output 2 (OUT2) energize/de-energize when assigned to alarm</td>
<td>4-6, 4-14, 7-13, 12-43</td>
</tr>
<tr>
<td></td>
<td>Output 3 (OUT3) energize/de-energize when assigned to alarm</td>
<td>4-6, 4-14, 7-13, 12-46</td>
</tr>
<tr>
<td></td>
<td>Output assignment</td>
<td>3-9, 7-2</td>
</tr>
<tr>
<td></td>
<td>Output assignment of Alarm 1</td>
<td>1-7, 4-6, 4-14, 7-4, 12-45</td>
</tr>
<tr>
<td></td>
<td>Output assignment of Alarm 2</td>
<td>1-7, 4-6, 4-14, 7-4, 12-45</td>
</tr>
<tr>
<td></td>
<td>Output assignment of Heater break alarm 1</td>
<td>1-7, 4-6, 4-14, 7-4, 12-45</td>
</tr>
<tr>
<td></td>
<td>Output assignment of Heater break alarm 2</td>
<td>1-7, 4-6, 4-14, 7-4, 12-45</td>
</tr>
<tr>
<td></td>
<td>Output limiter high</td>
<td>4-5, 4-11, 7-6, 12-39</td>
</tr>
<tr>
<td></td>
<td>Output limiter low</td>
<td>4-5, 4-11, 7-6, 12-39</td>
</tr>
<tr>
<td></td>
<td>Output state monitor</td>
<td>12-38</td>
</tr>
<tr>
<td></td>
<td>Overlap/Deadband</td>
<td>4-5, 4-11, 11-25, 12-35</td>
</tr>
<tr>
<td></td>
<td>Over-scale</td>
<td>5-2, 6-10, 13-2</td>
</tr>
<tr>
<td></td>
<td>OVERVOLTAGE CATEGORY</td>
<td>2-2, 14-15</td>
</tr>
<tr>
<td>P</td>
<td>Panel thickness</td>
<td>2-3</td>
</tr>
<tr>
<td></td>
<td>Parameter setting mode</td>
<td>4-2, 4-5, 4-10</td>
</tr>
<tr>
<td></td>
<td>Peak hold monitor of ambient temperature</td>
<td>4-6, 4-13, 12-37</td>
</tr>
<tr>
<td></td>
<td>PID control (direct action)</td>
<td>1-4, 4-16, 11-4</td>
</tr>
<tr>
<td></td>
<td>PID control (reverse action)</td>
<td>1-4, 4-16, 11-4</td>
</tr>
<tr>
<td></td>
<td>Polling</td>
<td>12-12</td>
</tr>
<tr>
<td></td>
<td>POLLUTION DEGREE 2</td>
<td>2-2, 14-15</td>
</tr>
<tr>
<td></td>
<td>Power supply voltage is abnormal (power supply voltage monitoring)</td>
<td>13-3</td>
</tr>
<tr>
<td></td>
<td>Preset multiple registers (Write multiple registers) [10H]</td>
<td>12-31</td>
</tr>
<tr>
<td></td>
<td>Preset single register [06H]</td>
<td>12-29</td>
</tr>
<tr>
<td></td>
<td>Process high</td>
<td>10-9</td>
</tr>
<tr>
<td></td>
<td>Process low</td>
<td>10-9</td>
</tr>
<tr>
<td></td>
<td>Proportional action</td>
<td>11-14</td>
</tr>
<tr>
<td></td>
<td>Proportional band [cool-side]</td>
<td>4-5, 4-11, 11-17, 11-25, 12-35</td>
</tr>
<tr>
<td></td>
<td>Proportional band [heat-side]</td>
<td>4-5, 4-10, 11-17, 11-21, 11-24, 12-35</td>
</tr>
<tr>
<td></td>
<td>Proportional cycle time [cool-side]</td>
<td>4-5, 4-11, 7-9, 12-36</td>
</tr>
<tr>
<td></td>
<td>Proportional cycle time [heat-side]</td>
<td>4-5, 4-10, 7-9, 12-35</td>
</tr>
<tr>
<td></td>
<td>PROTEM2</td>
<td>1-2, 12-2, 12-3, 12-7</td>
</tr>
<tr>
<td></td>
<td>PV bias</td>
<td>4-5, 4-11, 6-7, 12-36</td>
</tr>
<tr>
<td></td>
<td>PV digital filter</td>
<td>4-5, 4-11, 6-8, 12-39</td>
</tr>
<tr>
<td></td>
<td>PV flashing display at input error</td>
<td>4-5, 4-15, 6-11, 12-40</td>
</tr>
<tr>
<td></td>
<td>PV/SV monitor</td>
<td>4-4, 4-8</td>
</tr>
<tr>
<td>Q</td>
<td>Quick start code 2 (Initial setting code)</td>
<td>1-7</td>
</tr>
<tr>
<td>R</td>
<td>Read holding registers [03H]</td>
<td>12-28</td>
</tr>
<tr>
<td></td>
<td>Re-hold action</td>
<td>5-3, 10-11</td>
</tr>
<tr>
<td></td>
<td>Reinforced insulation</td>
<td>i-2, 3-3, 14-15</td>
</tr>
<tr>
<td></td>
<td>ROM version</td>
<td>4-6, 4-13, 12-37, 13-13</td>
</tr>
<tr>
<td></td>
<td>RS-232C</td>
<td>12-5</td>
</tr>
<tr>
<td></td>
<td>RS-232C/RS-485 converter</td>
<td>12-5</td>
</tr>
<tr>
<td></td>
<td>RS-485</td>
<td>12-2, 12-4</td>
</tr>
<tr>
<td></td>
<td>RUN/STOP transfer</td>
<td>11-2, 12-34, 14-9</td>
</tr>
<tr>
<td>S</td>
<td>Sampling cycle</td>
<td>1-2, 14-2</td>
</tr>
<tr>
<td></td>
<td>Selecting</td>
<td>12-18</td>
</tr>
<tr>
<td></td>
<td>Self-diagnostic error</td>
<td>13-3</td>
</tr>
<tr>
<td></td>
<td>Send/Receive timing</td>
<td>12-11</td>
</tr>
<tr>
<td></td>
<td>Set data lock</td>
<td>4-5, 4-11, 8-9, 12-36</td>
</tr>
<tr>
<td></td>
<td>Set value (SV)</td>
<td>4-4, 4-8, 12-34</td>
</tr>
<tr>
<td></td>
<td>Set value action</td>
<td>10-10</td>
</tr>
<tr>
<td></td>
<td>Setting example</td>
<td>5-12, 5-13, 10-3, 10-24, 10-33</td>
</tr>
<tr>
<td></td>
<td>Setting limiter high</td>
<td>4-6, 4-14, 8-2, 12-40</td>
</tr>
<tr>
<td></td>
<td>Setting limiter low</td>
<td>4-6, 4-15, 8-2, 12-40</td>
</tr>
<tr>
<td></td>
<td>Show/Hide SV display</td>
<td>4-6, 4-15, 9-6, 12-46</td>
</tr>
<tr>
<td></td>
<td>Slave address</td>
<td>12-22</td>
</tr>
<tr>
<td></td>
<td>Solderless terminal</td>
<td>3-2, 3-3</td>
</tr>
<tr>
<td></td>
<td>ST start condition</td>
<td>4-7, 4-17, 11-12, 12-44</td>
</tr>
<tr>
<td></td>
<td>Standard display mode</td>
<td>9-2</td>
</tr>
<tr>
<td></td>
<td>Startup tuning (ST)</td>
<td>1-2, 1-10, 4-5, 4-10, 11-10, 12-39, 14-9</td>
</tr>
<tr>
<td></td>
<td>STOP display selection</td>
<td>4-6, 4-15, 9-4, 12-45</td>
</tr>
<tr>
<td></td>
<td>STOP function at Initial setting mode</td>
<td>4-6, 4-15, 8-6, 12-46</td>
</tr>
<tr>
<td></td>
<td>STX</td>
<td>12-13</td>
</tr>
<tr>
<td></td>
<td>Suffix code</td>
<td>1-4</td>
</tr>
<tr>
<td></td>
<td>SV high</td>
<td>10-10</td>
</tr>
<tr>
<td></td>
<td>SV low</td>
<td>10-10</td>
</tr>
<tr>
<td></td>
<td>SV setting mode</td>
<td>4-2, 4-4, 4-8</td>
</tr>
</tbody>
</table>
INDEX

T
Temperature compensation error 13-3
Temperature unit ... 4-6, 4-14, 6-4, 12-46
Terminal cover ... 1-3, 2-3, 3-3, 3-4, 3-11
Termination resistors .. 12-4, 12-5, 12-6

U
Underscale ... 5-2, 6-10, 13-2
Upscale .. 5-2, 14-2
USB communication converter 12-2, 12-6, 12-7

W
Watchdog timer error .. 13-3
Water cooling ... 11-5, 11-24
Waterproof/Dustproof (or waterproof and dustproof) 1-2, 1-4, 2-3, 2-4, 2-6, 14-15, A-7
Website .. 1-2, 1-3, 1-9, 12-3, 12-7
INDEX [Character order]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (R)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abo1</td>
<td>Alarm 1 action at input burnout</td>
<td>INI 1041</td>
<td>5-7, 4-15, 6-11</td>
</tr>
<tr>
<td>Abo3</td>
<td>Alarm 2 action at input burnout</td>
<td>INI 1042</td>
<td>5-7, 7-15, 6-11</td>
</tr>
<tr>
<td>Add</td>
<td>Device address</td>
<td>COMM</td>
<td>4-4, 4-9, 12-8</td>
</tr>
<tr>
<td>AH1</td>
<td>Alarm 1 differential gap</td>
<td>INI 1041</td>
<td>4-7, 4-15, 10-14</td>
</tr>
<tr>
<td>AH2</td>
<td>Alarm 2 differential gap</td>
<td>INI 1042</td>
<td>4-7, 7-15, 10-14</td>
</tr>
<tr>
<td>AlL1</td>
<td>Alarm 1 interlock</td>
<td>INI 1041</td>
<td>5-7, 4-15, 10-19</td>
</tr>
<tr>
<td>AlL2</td>
<td>Alarm 2 interlock</td>
<td>INI 1042</td>
<td>4-7, 7-15, 10-19</td>
</tr>
<tr>
<td>AlL3</td>
<td>Alarm 1 set value (ALM1)</td>
<td>PARA</td>
<td>4-5, 4-10</td>
</tr>
<tr>
<td>AlL4</td>
<td>Alarm 1 set value (ALM1) [low]</td>
<td>PARA</td>
<td>4-5, 4-10</td>
</tr>
<tr>
<td>AlL12</td>
<td>Alarm 2 set value (ALM2)</td>
<td>PARA</td>
<td>4-5, 4-10</td>
</tr>
<tr>
<td>AlL12</td>
<td>Alarm 2 set value (ALM2) [low]</td>
<td>PARA</td>
<td>4-5, 4-10</td>
</tr>
<tr>
<td>AlL5</td>
<td>Comprehensive alarm state</td>
<td>MONI</td>
<td>4-4, 4-8, 10-48</td>
</tr>
<tr>
<td>AlM1</td>
<td>Alarm 1 type</td>
<td>INI 10000</td>
<td>3-5, 4-12, 10-12</td>
</tr>
<tr>
<td>AlM2</td>
<td>Alarm 2 type</td>
<td>INI 10000</td>
<td>3-5, 4-12, 10-12</td>
</tr>
<tr>
<td>ALT1</td>
<td>Alarm 1 timer</td>
<td>INI 1041</td>
<td>4-5, 5-10, 11-17, 11-25</td>
</tr>
<tr>
<td>ALT2</td>
<td>Alarm 2 timer</td>
<td>INI 1042</td>
<td>4-5, 5-10, 11-17, 11-25</td>
</tr>
<tr>
<td>ATr</td>
<td>Anti-reset windup (ARW)</td>
<td>PARA</td>
<td>4-5, 5-10, 11-17, 11-25</td>
</tr>
<tr>
<td>ATU</td>
<td>Autotuning (AT)</td>
<td>PARA</td>
<td>4-5, 5-10, 11-19</td>
</tr>
<tr>
<td>B (b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b1F</td>
<td>Data bit configuration</td>
<td>COMM</td>
<td>4-4, 4-9, 12-8</td>
</tr>
<tr>
<td>bPS</td>
<td>Communication speed</td>
<td>COMM</td>
<td>4-4, 4-9, 12-8</td>
</tr>
<tr>
<td>C (E)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMPF</td>
<td>Communication protocol</td>
<td>COMM</td>
<td>4-4, 4-9, 12-8</td>
</tr>
<tr>
<td>CMrnm</td>
<td>Communication response monitor</td>
<td>COMM</td>
<td>4-4, 4-9</td>
</tr>
<tr>
<td>Cod</td>
<td>Initial setting code</td>
<td>INI 10000</td>
<td>4-5, 4-12</td>
</tr>
<tr>
<td>Cod</td>
<td>Initial setting code 0001</td>
<td>INI 10001</td>
<td>4-6, 4-13</td>
</tr>
<tr>
<td>Cod</td>
<td>Initial setting code 0002</td>
<td>INI 10002</td>
<td>4-6, 4-13</td>
</tr>
<tr>
<td>Cod</td>
<td>Initial setting code 0003</td>
<td>INI 10003</td>
<td>4-6, 4-14</td>
</tr>
<tr>
<td>Cod</td>
<td>Initial setting code 1021</td>
<td>INI 1021</td>
<td>4-6, 4-14</td>
</tr>
<tr>
<td>Cod</td>
<td>Initial setting code 1030</td>
<td>INI 1030</td>
<td>4-6, 4-15</td>
</tr>
<tr>
<td>Cod</td>
<td>Initial setting code 1041</td>
<td>INI 1041</td>
<td>4-7, 4-15</td>
</tr>
<tr>
<td>Cod</td>
<td>Initial setting code 1042</td>
<td>INI 1042</td>
<td>4-7, 4-15</td>
</tr>
<tr>
<td>Cod</td>
<td>Initial setting code 1045</td>
<td>INI 1045</td>
<td>4-7, 4-15</td>
</tr>
<tr>
<td>Cod</td>
<td>Initial setting code 1051</td>
<td>INI 1051</td>
<td>4-7, 4-16</td>
</tr>
<tr>
<td>Cod</td>
<td>Initial setting code 1052</td>
<td>INI 1052</td>
<td>4-7, 4-17</td>
</tr>
<tr>
<td>CT1</td>
<td>Current transformer 1 (CT1) input value monitor</td>
<td>MONI</td>
<td>4-4, 4-8</td>
</tr>
<tr>
<td>CT2</td>
<td>Current transformer 2 (CT2) input value monitor</td>
<td>MONI</td>
<td>4-4, 4-8</td>
</tr>
<tr>
<td>CT1</td>
<td>CT1 ratio</td>
<td>INI 1045</td>
<td>5-7, 4-16, 10-40</td>
</tr>
<tr>
<td>CT2</td>
<td>CT2 ratio</td>
<td>INI 1045</td>
<td>5-7, 4-16, 10-40</td>
</tr>
<tr>
<td>D (d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Derivative time</td>
<td>PARA</td>
<td>4-5, 5-10, 11-17, 11-25</td>
</tr>
<tr>
<td>db</td>
<td>Overlap/Deadband</td>
<td>PARA</td>
<td>4-5, 5-11, 11-15, 11-25</td>
</tr>
<tr>
<td>dF</td>
<td>PV digital filter</td>
<td>PARA</td>
<td>4-5, 4-11, 6-8</td>
</tr>
<tr>
<td>dSEL</td>
<td>Display mode selection</td>
<td>INI 10003</td>
<td>4-6, 4-14, 9-3</td>
</tr>
<tr>
<td>dSoP</td>
<td>PV flashing display at input error</td>
<td>INI 1021</td>
<td>4-6, 4-15, 11-9</td>
</tr>
<tr>
<td>dSY</td>
<td>Show/Hide SV display</td>
<td>INI 1021</td>
<td>4-6, 4-15, 9-6</td>
</tr>
<tr>
<td>E (E)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV1</td>
<td>OUT1 (OUT1) energizer/off-energize when assigned to alarm</td>
<td>INI 10002</td>
<td>4-6, 4-14, 10-12</td>
</tr>
<tr>
<td>EV2</td>
<td>OUT2 (OUT2) energizer/off-energize when assigned to alarm</td>
<td>INI 10002</td>
<td>4-6, 4-14, 10-13</td>
</tr>
<tr>
<td>EV3</td>
<td>OUT3 (OUT3) energizer/off-energize when assigned to alarm</td>
<td>INI 10002</td>
<td>4-6, 4-14, 10-13</td>
</tr>
<tr>
<td>H (H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBA1</td>
<td>Heater break alarm 1 (HBA1) set value</td>
<td>PARA</td>
<td>4-5, 4-10, 10-38</td>
</tr>
<tr>
<td>HBA2</td>
<td>Heater break alarm 2 (HBA2) set value</td>
<td>PARA</td>
<td>4-5, 4-10, 10-39</td>
</tr>
<tr>
<td>HBT</td>
<td>HBA1 HBA2</td>
<td>PARA</td>
<td>4-5, 4-10, 10-42</td>
</tr>
<tr>
<td>HIL1</td>
<td>HBA1 interlock</td>
<td>INI 1045</td>
<td>4-7, 4-16, 10-44</td>
</tr>
<tr>
<td>HIL2</td>
<td>HBA2 interlock</td>
<td>INI 1045</td>
<td>4-7, 4-16, 10-44</td>
</tr>
<tr>
<td>I (I)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Integral time</td>
<td>PARA</td>
<td>4-5, 4-10, 11-17, 11-25</td>
</tr>
<tr>
<td>InP</td>
<td>Input type</td>
<td>INI 10000</td>
<td>4-5, 4-12, 6-3</td>
</tr>
<tr>
<td>InS</td>
<td>STOP function at Initial setting mode</td>
<td>INI 1035</td>
<td>4-6, 4-15, 8-8</td>
</tr>
<tr>
<td>InT</td>
<td>Interval time</td>
<td>COMM</td>
<td>4-4, 4-9, 12-8</td>
</tr>
<tr>
<td>ILr</td>
<td>Interlock release</td>
<td>SV</td>
<td>4-4, 4-8, 10-22</td>
</tr>
<tr>
<td>L (L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LBA</td>
<td>Control loop break alarm (LBA) time</td>
<td>PARA</td>
<td>4-5, 4-10, 10-39</td>
</tr>
<tr>
<td>Lbd</td>
<td>LBA deadband (LBD)</td>
<td>PARA</td>
<td>4-5, 4-10, 10-39</td>
</tr>
<tr>
<td>LCK</td>
<td>Set data lock</td>
<td>PARA</td>
<td>4-5, 4-11, 8-9</td>
</tr>
<tr>
<td>M (n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Minimum ON/OFF time of proportioning cycle (heat-side)</td>
<td>PARA</td>
<td>4-5, 4-11, 7-9</td>
</tr>
<tr>
<td>Mv</td>
<td>Minimum ON/OFF time of proportioning cycle (cool-side)</td>
<td>PARA</td>
<td>4-5, 4-11, 7-9</td>
</tr>
<tr>
<td>My</td>
<td>Manipulated output value (heat-side)</td>
<td>MONI</td>
<td>4-4, 4-8, 7-15</td>
</tr>
<tr>
<td>Mvc</td>
<td>Manipulated output value (cool-side)</td>
<td>MONI</td>
<td>4-4, 4-8, 7-15</td>
</tr>
<tr>
<td>O (o)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oAL1</td>
<td>Output assignment of Alarm 1</td>
<td>INI 10002</td>
<td>4-6, 4-14, 7-4</td>
</tr>
<tr>
<td>oAL2</td>
<td>Output assignment of Alarm 2</td>
<td>INI 10002</td>
<td>4-6, 4-14, 7-4</td>
</tr>
<tr>
<td>obo</td>
<td>Control output at burnout</td>
<td>INI 1051</td>
<td>4-5, 4-11, 7-11</td>
</tr>
<tr>
<td>oC1</td>
<td>Control output assignment</td>
<td>INI 10002</td>
<td>4-6, 4-13, 7-3</td>
</tr>
<tr>
<td>oHb1</td>
<td>Output assignment of Heater break alarm 1</td>
<td>INI 1002</td>
<td>4-6, 4-14, 7-4</td>
</tr>
<tr>
<td>oHb2</td>
<td>Output assignment of Heater break alarm 2</td>
<td>INI 1002</td>
<td>4-6, 4-14, 7-4</td>
</tr>
<tr>
<td>oHH</td>
<td>OFF/OFF action differential gap (upper)</td>
<td>INI 1051</td>
<td>4-7, 4-16, 11-21</td>
</tr>
<tr>
<td>Symbol</td>
<td>Name</td>
<td>Mode</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>oHL</td>
<td>ON/OFF action differential gap (lower)</td>
<td>INI</td>
<td>1051</td>
</tr>
<tr>
<td>oLH</td>
<td>Output limiter high</td>
<td>PARA</td>
<td>4-5, 4-11, 7-6</td>
</tr>
<tr>
<td>oLL</td>
<td>Output limiter low</td>
<td>PARA</td>
<td>4-5, 4-11, 7-6</td>
</tr>
<tr>
<td>oS</td>
<td>Direct/Reverse action</td>
<td>INI</td>
<td>1051</td>
</tr>
<tr>
<td>oSc</td>
<td>Cool action</td>
<td>INI</td>
<td>1051</td>
</tr>
<tr>
<td>P</td>
<td>Proportional band (heat-side)</td>
<td>PARA</td>
<td>4-5, 4-10, 11-17, 11-21, 11-24</td>
</tr>
<tr>
<td>Pb</td>
<td>PV bias</td>
<td>PARA</td>
<td>4-5, 4-11, 6-7</td>
</tr>
<tr>
<td>Pc</td>
<td>Proportional band (cool-side)</td>
<td>PARA</td>
<td>4-5, 4-11, 11-17, 11-29</td>
</tr>
<tr>
<td>PGdP</td>
<td>Decimal point position</td>
<td>INI</td>
<td>0000</td>
</tr>
<tr>
<td>PGSH</td>
<td>Input range high</td>
<td>INI</td>
<td>0000</td>
</tr>
<tr>
<td>PGSL</td>
<td>Input range low</td>
<td>INI</td>
<td>0000</td>
</tr>
<tr>
<td>PTU</td>
<td>Fine tuning</td>
<td>PARA</td>
<td>4-5, 4-11, 11-29</td>
</tr>
<tr>
<td>SLH</td>
<td>Setting limiter high</td>
<td>INI</td>
<td>1021</td>
</tr>
<tr>
<td>SLL</td>
<td>Setting limiter low</td>
<td>INI</td>
<td>1021</td>
</tr>
<tr>
<td>SPCH</td>
<td>STOP display selection</td>
<td>INI</td>
<td>1030</td>
</tr>
<tr>
<td>SS</td>
<td>Action selection at STOP mode</td>
<td>INI</td>
<td>1030</td>
</tr>
<tr>
<td>SFS</td>
<td>Start condition</td>
<td>INI</td>
<td>1052</td>
</tr>
<tr>
<td>STU</td>
<td>Startup tuning (ST)</td>
<td>PARA</td>
<td>4-5, 4-10, 11-12</td>
</tr>
<tr>
<td>T</td>
<td>Proportional cycle time (heat-side)</td>
<td>PARA</td>
<td>4-5, 4-10, 7-9</td>
</tr>
<tr>
<td>t</td>
<td>Proportional cycle time (cool-side)</td>
<td>PARA</td>
<td>4-5, 4-11, 7-9</td>
</tr>
<tr>
<td>TCJ</td>
<td>Peak hold monitor of ambient temperature</td>
<td>INI</td>
<td>0001</td>
</tr>
<tr>
<td>U</td>
<td>Unit</td>
<td>INI</td>
<td>1021</td>
</tr>
<tr>
<td>UnIF</td>
<td>Temperature unit</td>
<td>INI</td>
<td>1021</td>
</tr>
<tr>
<td>W</td>
<td>Integrated operating time (upper-digits)</td>
<td>INI</td>
<td>0001</td>
</tr>
<tr>
<td>WTH</td>
<td>Integrated operating time (lower-digits)</td>
<td>INI</td>
<td>0001</td>
</tr>
<tr>
<td>X</td>
<td>Control action</td>
<td>INI</td>
<td>1051</td>
</tr>
</tbody>
</table>