Module Type Controller SRX
Temperature Control Module for PROFIBUS

X-TIO-G
Instruction Manual

IMS01N09-E5

Thank you for purchasing this RKC product. In order to achieve maximum performance and ensure proper operation of your new instrument, carefully read all the instructions in this manual. Please place the manual in a convenient location for easy reference.

SYMBOLS

WARNING
This mark indicates precautions that must be taken if there is danger of electric shock, fire, etc., which could result in loss of life or injury.

CAUTION
This mark indicates that if these precautions and operating procedures are not taken, damage to the instrument may result.

This mark indicates important information on installation, handling and operating procedures.

This mark indicates supplemental information on installation, handling and operating procedures.

This mark indicates where additional information may be located.

WARNING

To prevent injury to persons, damage to instrument and equipment, a suitable external protection device shall be required.

All wiring must be completed before power is turned on to prevent electric shock, fire or damage to instrument and equipment.

This instrument must be used in accordance with the specifications to prevent fire or damage to instrument and equipment.

This instrument is not intended for use in locations subject to flammable or explosive gases.

Do not touch high-voltage connections such as power supply terminals, etc. to avoid electric shock.

RKC is not responsible if this instrument is repaired, modified or disassembled by other than factory-approved personnel. Malfunction can occur and warranty is void under these conditions.

CAUTION

This product is intended for use with industrial machines, test and measuring equipment. (It is not designed for use with medical equipment and nuclear energy.)

This is a Class A instrument. In a domestic environment, this instrument may cause radio interference, in which case the user may be required to take additional measures.

This instrument is protected from electric shock by reinforced insulation. Provide reinforced insulation between the wire for the input signal and the wires for instrument power supply, source of power and loads.

Be sure to provide an appropriate surge control circuit respectively for the following:
- If input/output or signal lines within the building are longer than 30 meters.
- If input/output or signal lines leave the building, regardless the length.

This instrument is designed for installation in an enclosed instrumentation panel. All high-voltage connections such as power supply terminals must be enclosed in the instrumentation panel to avoid electric shock by operating personnel.

All precautions described in this manual should be taken to avoid damage to the instrument or equipment.

All wiring must be in accordance with local codes and regulations.

All wiring must be completed before power is turned on to prevent electric shock, instrument failure, or incorrect action. The power must be turned off before repairing work for input break and output failure including replacement of sensor, contactor or SSR, and all wiring must be completed before power is turned on again.

To prevent instrument damage as a result of failure, protect the power line and the input/output lines from high currents with a suitable overcurrent protection device with adequate breaking capacity such as fuse, circuit breaker, etc.

Prevent metal fragments or lead wire scraps from falling inside instrument case to avoid electric shock, fire or malfunction.

Tighten each terminal screw to the specified torque found in the manual to avoid electric shock, fire or malfunction.

For proper operation of this instrument, provide adequate ventilation for heat dispensation.

Do not connect wires to unused terminals as this will interfere with proper operation of the instrument.

Turn off the power supply before cleaning the instrument.

Do not use a volatile solvent such as paint thinner to clean the instrument. Deformation or discoloration will occur. Use a soft, dry cloth to remove stains from the instrument.

Avoid damage to instrument display, do not rub with an abrasive material or push front panel with a hard object.

When high alarm with hold action/re-hold action is used for Event function, alarm does not turn on while hold action is in operation. Take measures to prevent overheating which may occur if the control device fails.

NOTICE

This manual assumes that the reader has a fundamental knowledge of the principles of electricity, process control, computer technology and communications.

The figures, diagrams and numeric values used in this manual are only for purpose of illustration.

RKC is not responsible for any damage or injury that is caused as a result of using this instrument, instrument failure or indirect damage.

RKC is not responsible for any damage and/or injury resulting from the use of instruments made by imitating this instrument.

Periodic maintenance is required for safe and proper operation of this instrument. Some components have a limited service life, or characteristics that change over time.

Every effort has been made to ensure accuracy of all information contained herein. RKC makes no warranty expressed or implied, with respect to the accuracy of the information. The information in this manual is subject to change without prior notice.

No portion of this document may be reprinted, modified, copied, transmitted, digitized, stored, processed or retrieved through any mechanical, electronic, optical or other means without prior written approval from RKC.
1. OUTLINE

The X-TIO-G (temperature control module for PROFIBUS) can send/receive data to/from PROFIBUS compatible programmable controllers (PLC) via PROFIBUS. One X-TIO-G module enables temperature control corresponding to two channels. It has power supply and communication terminals in addition to temperature control input and output terminals. All data are set by communication.

For details, refer to the Module Type Controller SRX PROFIBUS Communication Instruction Manual (IMS01N10-EC) and the Module Type Controller SRX Communication Instruction Manual (IMS01N01-EC).

![Diagram of X-TIO-G module](image)

Programmable controller (PLC)

2. PRODUCT CHECK

Before using this product, check each of the following:

- Model code
- Check that all of the accessories delivered are complete.
- Check that there are no scratch or breakage in external appearance (case, front panel, or terminal, etc).

X-TIO-G- □ □ - □□□□□□□□□□□□□□□ / Y
(1) (2) (3) (4) (5) (6) (7) (8)

(1) Type
G: Module for PROFIBUS

(2) Input channel 1, (3) Input channel 2
W: TC W5Re/W26Re B: TC B
D: RTD P100 P: RTD Jp100
1: 0 to 10 mV DC 2: 0 to 100 mV DC 3: 0 to 1 V DC
4: 0 to 5 V DC 5: 0 to 10 V DC 6: 1 to 5 V DC
7: 0 to 20 mA DC 8: 4 to 20 mA DC

(4) Control output 1, (5) Control output 2
M: Relay contact output V: Voltage pulse output 0/12 V DC
4: 0 to 5 V DC 5: 0 to 10 V DC 6: 1 to 5 V DC
7: 0 to 20 mA DC 8: 4 to 20 mA DC

(6) CT1 input, (7) CT2 input
N: None P: CTL-6-P-N S: CTL-12-S56-10L-N

(8) Version symbol
No code: For Japanese domestic market
Y: For International market

Heater break alarm (HBA) function can not be used when control output is Voltage/Current output.

3. PARTS DESCRIPTION

- Indication lamps 1
 - FAIL/RUN (for temperature control side)
 - RX/TX (for PROFIBUS communication)
 - EVENT 1 to 4
 - Display various states by setting.
 - When normally: A green lamp turns on
 - When abnormally: A red lamp turns on

- Indication lamps 2
 - RX/TX (for RKC communication/Modbus)
 - EVENT 1 to 4
 - Display various states by setting.
 - When normally: A green lamp turns on
 - When abnormally: A red lamp turns on

- Joint connector (Left-side)
- Joint connector (Right-side)
- Terminal cover

4. COMMUNICATION SETTING

Set communication setting before mounting and wiring of SRX.

CAUTION
Do not separate the module mainframe from the terminal base with the power turned on. If so, instrument failure may result.
4.1 Address Setting

PROFIBUS address setting

Set an address of PROFIBUS. For this setting, use a small slotted screwdriver.

- **Address setting switch 2**
 - High-order digit setting
 - (Set value > 10h)
 - Low-order digit setting
 - (Set value > 1h)
- **Setting range**: 1 to 125
 - [01h to 7Dh: hexadecimal]
 - (Factory set value: 00h)

- **Module address setting**

Set an address of module. For this setting, use a small slotted screwdriver.

- **Address setting switch 1**
 - High-order digit setting
 - (Set value > 10)
 - Low-order digit setting
 - (Set value > 1)
- **Setting range**: 0 to 98
 - (Factory set value: 00)

- **Do not set address 99. Otherwise, problems or malfunction may result.**
- **For Modbus, the value obtained by adding “1” to the set address corresponds to the address used for the actual program.**
- **Set the module address such that it is different to the other addresses on the same line. Otherwise, problems or malfunction may result.**

4.2 Internal Data Bus Termination Resistor Setting (PROFIBUS side)

Set the termination resistor of internal data bus for internal communication.

If two or more modules are connected, set the internal data bus termination resistors to ON in modules at both ends. As a rule, as the X-TIO-G module is connected to the left end, set the internal data bus termination resistor to ON (No. 8 of DIP switch 1: ON) on the PROFIBUS side and set that to OFF (No.8 of DIP switch 2: OFF) on the temperature control side.

- **Switch No. 7 must be always OFF. Do not set to ON.**
- **When two or more modules are connected on the same communication line, the DIP switch settings (switch 1 to 6) of all modules must be the same positions.**
- **When RKC communication/Modbus is not used, switches other than switch 8 need not be set.**

For RKC communication/Modbus, refer to the Module Type Controller SRX Communication Instruction Manual (IMS01N01-E).

4.3 RKC Communication/Modbus Setting (Temperature control side)

With the DIP switch 2 which is on the right side of module, select communication speed for RKC communication/Modbus, data bit configuration for RKC communication/Modbus, protocol and termination resistor of internal data bus.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>Communication speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>2400 bps</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>9600 bps</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>19200 bps</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>38400 bps</td>
</tr>
</tbody>
</table>

Factory set value: 9600 bps

<table>
<thead>
<tr>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Data bit configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>Data 7-bit, without parity, Stop 1-bit *</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>Data 7-bit, Even parity, Stop 1-bit *</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>Data 7-bit, Odd parity, Stop 1-bit *</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>Data 8-bit, without parity, Stop 1-bit</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>Data 8-bit, Even parity, Stop 1-bit</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>Data 8-bit, Odd parity, Stop 1-bit</td>
</tr>
</tbody>
</table>

* When the Modbus communication protocol is selected, this setting becomes invalid.

Factory set value: Data 8-bit, without parity, Stop 1-bit

<table>
<thead>
<tr>
<th>6</th>
<th>Protocol selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>RKC communication</td>
</tr>
<tr>
<td>ON</td>
<td>Modbus</td>
</tr>
</tbody>
</table>

Factory set value: RKC communication

<table>
<thead>
<tr>
<th>8</th>
<th>Internal data bus termination resistor setting (temperature control side)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Termination resistor OFF</td>
</tr>
<tr>
<td>ON</td>
<td>Termination resistor ON</td>
</tr>
</tbody>
</table>

Factory set value: Termination resistor ON

- **Switch No. 7 must be always OFF. Do not set to ON.**
- **When two or more modules are connected on the same communication line, the DIP switch settings (switch 1 to 6) of all modules must be the same positions.**
- **When RKC communication/Modbus is not used, switches other than switch 8 need not be set.**

5. MOUNTING

WARNING

To prevent electric shock or instrument failure, always turn off the power before mounting or removing the instrument.

5.1 Mounting Cautions

1. This instrument is intended to be used under the following environmental conditions. (IEC61010-1)
 - [OVERVOLTAGE CATEGORY II, POLLUTION DEGREE 2]
(2) Use this instrument within the following environment conditions:
- Allowable ambient temperature: -10 to +50 °C
- Allowable ambient humidity: 5 to 95 %RH
 (Absolute humidity: MAX. W. C 29 g/m³ dry air at 101.3 kPa)
- Installation environment conditions: Indoor use
 Altitude up to 2000 m

(3) Avoid the following when selecting the mounting location:
- Rapid changes in ambient temperature, which may cause condensation.
- Corrosive or inflammable gases.
- Direct vibration or shock to the mainframe.
- Excessive dust, salt or iron particles.
- Excessive induction noise, static electricity, magnetic fields or noise.
- Direct air flow from an air conditioner.
- Exposure to direct sunlight.
- Excessive heat accumulation.

(4) Mount this instrument in the panel considering the following conditions:
- Provide adequate ventilation space so that heat does not build up.
- Do not mount this instrument directly above equipment that generates large amount of heat (heaters, transformers, semi-conductor functional devices, large-wattage resistors.)
- If the ambient temperature rises above 50 °C, cool this instrument with a forced air fan, cooler, etc. Cooled air should not blow directly on this instrument.
- In order to improve safety and the immunity to withstand noise, mount this instrument as far away as possible from high voltage equipment, power lines, and rotating machinery.
 - High voltage equipment: Do not mount within the same panel.
 - Power lines: Separate at least 200 mm.
 - Rotating machinery: Separate as far as possible.
- Ensure at least 50 mm space on top and bottom of the control unit for maintenance and environmental reasons.

(5) In case this instrument is connected to a supply by means of a permanent connection a switch or circuit-breaker shall be included in the installation. This shall be in close proximity to the equipment and within easy reach of the operator. It shall be marked as the disconnecting device for the equipment.

5.2 Dimensions

5.3 DIN rail Mounting

Mounting procedures
1. Pull down the mounting bracket at the bottom of the module (A). Attach the hooks on the top of the module to the DIN rail and push the lower section into place on the DIN rail (B). [Fig. 1]
2. Slide the mounting bracket up to secure the module to the DIN rail.[Fig. 2]

5.4 Panel Mounting

Mounting procedures
1. Pull down the mounting bracket (A) until locked and that a mounting hole appears.
2. Prepare one mounting bracket per module (B) sold separately (KSRX-55) and then insert it in the rear of the terminal board at top of the module until locked but a mounting hole does not disappear.
3. Mount each module directly on the panel with screws which are inserted in the mounting holes of the top and bottom mounting brackets.

Recommended tightening torque: 0.3 N⋅m (3 kgf⋅cm)

The customer needs to provide the M3 size screws. Select the screw length that matches the mounting panel.

* For the conservation of the contact of connector, install a joint connector cover in module of both ends.
5.5 Jointing Each Module
Up to 29 modules (X-TIO-A/B, X-DI-A/B or X-DO-A/B) can be connected to one X-TIO-G module. Joint these modules according to the following procedure.

Jointing procedure
1. Mount the modules on the DIN rail and then joint these modules together with the joint connector while sliding the relevant module.
2. Lift each of the joint tabs located at the top and bottom of the module and then insert it in the slot of the adjacent module to fix these two modules.

For panel mounting, first joint each module and then mount it on the panel.

6. WIRING

To prevent electric shock or instrument failure, do not turn on the power until all wiring is completed. Make sure that the wiring is correct before applying power to the instrument.

6.1 Wiring Cautions
- For thermocouple input, use the appropriate compensation wire.
- For RTD input, use low resistance lead wire with no difference in resistance between the three lead wires.
- To avoid noise induction, keep input signal wire away from instrument power line, load lines and power lines of other electric equipment.
- Signal connected to Voltage input and Current input shall be low voltage defined as “SELV” circuit per IEC 60950-1.
- If there is electrical noise in the vicinity of the instrument that could affect operation, use a noise filter.
 - Shorten the distance between the twisted power supply wire pitches to achieve the most effective noise reduction.
 - Always install the noise filter on a grounded panel. Minimize the wiring distance between the noise filter output and the instrument power supply terminals to achieve the most effective noise reduction.
 - Do not connect fuses or switches to the noise filter output wiring as this will reduce the effectiveness of the noise filter.

- Power supply wiring must be twisted and have a low voltage drop.
- For an instrument with 24 V power supply input, supply power from “SELV” circuit defined as IEC 60950-1.
- A suitable power supply should be considered in end-use equipment. The power supply must be in compliance with a limited-energy circuits (maximum available current of 8 A).

- In the maximum configuration (extension up to 30 modules) the 24 V DC supplied equipment may draw up to 4 A. The power supply shall be capable of delivering at least 4 A.
- Use the solderless terminal appropriate to the screw size.
 - Screw size: M3 x 6
 - Recommended tightening torque: 0.4 N·m [4 kgf-cm]
 - Specified solderless terminals: With isolation

- Make sure that during field wiring parts of conductors cannot come into contact with adjacent conductive parts.

6.2 Terminal Configuration

6.3 Pin Layout of Connector
7. SPECIFICATIONS

Inputs

Number of inputs: 2 points (Isolated between each channel)

- **Thermocouple:** K, J, T, S, R, E, B, N (JIS-C1602-1995)
 - PLII (NBS)
 - W5Re/W26Re (ASTM-E988-96)
- **RTD:** Pt100 (JIS-C1604-1997)
- **Voltage (low):** 0 to 10 mV DC, 0 to 100 mV DC, 0 to 1 V DC
- **Voltage (high):** 0 to 5 V DC, 0 to 10 V DC, 1 to 5 V DC
- **Current:** 0 to 20 mA DC, 4 to 20 mA DC

 (Input impedance: 250 Ohm)

 Sampling cycle: 25 ms

 PV bias: -Input span to +Input span

 CT input: 2 points

 - 0.0 to 30.0 A (CTL-6P-N) or 0.0 to 100.0 A (CTL-12-S56-10L-N)

Outputs

Number of outputs: 2 points (Isolated between input and output, and between output and power supply)

- **Relay contact:** 250 V AC, 3 A (Resistive load)
 - 1a contact
 - Electrical life 300,000 times or more (Rated load)
- **Voltage pulse:** 0/12 V DC
- **Current:** 0 to 20 mA DC, 4 to 20 mA DC
- **Voltage:** 0 to 5 V DC, 0 to 10 V DC, 1 to 5 V DC

 (Load resistance 1 kOhm or more)

Control action

Number of controls: 2 points

- **Control method:** Brilliant PID control
- **Reverse action or direct action is selectable**

- **Additional function:**
 - Autotuning function
 - Output limiter function
 - Output change rate limiter function

Events

Number of events: 2 points/channel

- **Event type:** Temperature event
 - Deviation high, Deviation low, Deviation high/low, Band, Process high, Process low

Heater break alarm (HBA) function

Number of HBA: 2 points

- **Setting range:** 0.0 to 100.0 A (0.0 A: OFF)
- **Additional function:** Number of event delay times: 1 to 255 times

Control loop break alarm (LBA) function

Number of LBA: 2 points

- **LBA time:** 1 to 7200 seconds

- **LBA deadband (LBD) setting:** 0 to Input span

Program control

Number of patterns: 16 patterns max.

- (With pattern link function)

- Number of segments: 16 segments/pattern max.

- Time signal output: 16 points/pattern

Communications

Communication interface:

- Based on RS-485, EIA standard

- Communication protocol:
 - PROFIBUS-DP (EN50170)
 - RKC communication (ANSI X3.28-1976 subcategories 2.5 and A4) or Modbus

- Maximum connections: 31 instruments maximum including a host computer

Others

Power supply voltage: 21.6 to 26.4 V DC

- (Including power supply voltage variation)

- Rating: 24 V DC

- Current consumption: 0.25 A max.

- Allowable ambient temperature range:
 - –10 to +50 °C

- Allowable ambient humidity range:
 - 5 to 95 %RH (Non condensing)

- Absolute humidity:
 - MAX.W.C 29.3 g/m³ dry air at 101.3 kPa

Installation environment conditions:

- Indoor use

- Altitude up to 2000 m

- Weight: Approx. 300 g

Standard

Safety standard:

- UL: UL61010-1
- cUL: CAN/CSA-C22.2 No.61010-1

CE marking:

- LVD: EN61010-1
- OVERVOLTAGE CATEGORY II, POLLUTION DEGREE 2, Class II (Reinforced insulation)
- EMC: EN61326-1

- RCM: EN55011