Thank you for purchasing this RKC product. In order to achieve maximum performance and ensure proper operation of your new instrument, carefully read all the instructions in this manual. Please place the manual in a convenient location for easy reference.

SYMBOLS

- **WARNING**: This mark indicates precautions that must be taken if there is danger of electric shock, fire, etc., which could result in loss of life or injury.
- **CAUTION**: This mark indicates that these precautions and operating procedures are not taken, damage to the instrument may result.
- **!**: This mark indicates important information on installation, handling and operating procedures.
- **!**: This mark indicates supplemental information on installation, handling and operating procedures.
- **!**: This mark indicates where additional information may be located.

WARNING

- An external protection device must be installed if failure of this instrument could result in damage to the instrument, equipment or injury to personnel.
- All wiring must be completed before power is turned on to prevent electric shock, fire or damage to instrument and equipment.
- This instrument must be used in accordance with the specifications to prevent fire or damage to instrument and equipment.
- This instrument is not intended for use in locations subject to flammable or explosive gases.
- Do not touch high-voltage connections such as power supply terminals, etc. to avoid electric shock.
- RKC is not responsible if this instrument is repaired, modified or disassembled by other than factory-approved personnel. Malfunction can occur and warranty is void under these conditions.

CAUTION

- This product is intended for use with industrial machines, test and measuring equipment. (It is not designed for use with medical equipment and nuclear energy.)
- This is a Class A instrument. In a domestic environment, this instrument may cause radio interference, in which case the user may be required to take additional measures.
- This instrument is protected from electric shock by reinforced insulation. Provide reinforced insulation between the wire for the input signal and the wires for instrument power supply, source of power and loads.
- Be sure to provide an appropriate surge control circuit respectively for the following:
 - If input/output or signal lines within the building are longer than 30 meters.
 - If input/output or signal lines leave the building, regardless the length.
- This instrument is designed for installation in an enclosed instrumentation panel. All high-voltage connections such as power supply terminals must be enclosed in the instrumentation panel to avoid electric shock by operating personnel.
- All precautions described in this manual should be taken to avoid damage to the instrument or equipment.
- All wiring must be in accordance with local codes and regulations.
- All wiring must be completed before power is turned on to prevent electric shock, instrument failure, or incorrect action. The power must be turned off before repairing work for input break and output failure including replacement of sensor, contactor or SSR, and all wiring must be completed before power is turned on again.
- To prevent instrument damage or failure, protect the power line and the input/output lines from high currents with a protection device such as fuse, circuit breaker, etc.
- Prevent metal fragments or lead wire scraps from falling inside instrument case to avoid electric shock, fire or malfunction.
- Tighten each terminal screw to the specified torque found in the manual to avoid electric shock, fire or malfunction.
- For proper operation of this instrument, provide adequate ventilation for heat dispensation.
- Do not connect wires to unused terminals as this will interfere with proper operation of the instrument.
- Turn off the power supply before cleaning the instrument.
- Do not use a volatile solvent such as paint thinner to clean the instrument. Deformation or discoloration will occur. Use a soft, dry cloth to remove stains from the instrument.
- To avoid damage to instrument display, do not rub with an abrasive material or push front panel with a hard object.
- When high alarm with hold action/re-hold action is used for Event function, alarm does not turn on while hold action is in operation. Take measures to prevent overheating which may occur if the control device fails.

NOTICE

- This manual assumes that the reader has a fundamental knowledge of the principles of electricity, process control, computer technology and communications.
- The figures, diagrams and numeric values used in this manual are only for purpose of illustration.
- RKC is not responsible for any damage or injury that is caused as a result of using this instrument, instrument failure or indirect damage.
- RKC is not responsible for any damage and/or injury resulting from the use of instruments made by imitating this instrument.
- Periodic maintenance is required for safe and proper operation of this instrument. Some components have a limited service life, or characteristics that change over time.
- Every effort has been made to ensure accuracy of all information contained herein. RKC makes no warranty expressed or implied, with respect to the accuracy of the information. The information in this manual is subject to change without prior notice.
- No portion of this document may be reprinted, modified, copied, transmitted, digitized, stored, processed or retrieved through any mechanical, electronic, optical or other means without prior written approval from RKC.
1. OUTLINE

The temperature control module for DeviceNet V-TIO-J/V-TIO-K can send and receive data to/from DeviceNet compatible programmable controller (PLC) by the DeviceNet that is a multi-vendor compatible open field network.

One V-TIO-J/V-TIO-K module enables temperature control corresponding to two channels. It has power supply and communication terminals in addition to temperature control input and output terminals.

All data are set by communication.

![DeviceNet Communication Diagram](image)

For details when dividing two or more temperature control modules into some groups and then installed, refer to the Module Type Controller SRV DeviceNet Communication Instruction Manual (IMS01P11-ED).

For host communication using host communication terminals, refer to the Appendix B of Module Type Controller SRV DeviceNet Communication Instruction Manual (IMS01P11-ED) and the Module Type Controller SRV DeviceNet Communication Instruction Manual (IMS01P01-ED).

2. PRODUCT CHECK

Before using this product, check each of the following:

- Model code
- Check that all of the accessories delivered are complete.
- Check that there are no scratch or breakage in external appearance (case, front panel, or terminal, etc).

V–TIO–

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>Module for DeviceNet, Heat control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Module for DeviceNet, Heat/Cool control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) Control action (Each channel common code)

- **[For Heat control]**
 - F: PID action with Autotuning (AT) (reverse action)
 - D: PID action with Autotuning (AT) (direct action)
- **[For Heat/Cool control]**
 - B: Heat/Cool PID action with Autotuning (AT) (air cooling)
 - W: Heat/Cool PID action with Autotuning (AT) (water cooling)

(3) Input range (Each channel common code) [Thermocouple input]

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Range</th>
<th>Code</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>K02</td>
<td>0 to 400 °C</td>
<td>KB9</td>
<td>32 to 752 °F</td>
</tr>
<tr>
<td></td>
<td>K04</td>
<td>0 to 400 °C</td>
<td>KB8</td>
<td>32 to 1472 °F</td>
</tr>
<tr>
<td></td>
<td>K16</td>
<td>0 to 200 °C</td>
<td>KB7</td>
<td>32 to 2501 °F</td>
</tr>
<tr>
<td></td>
<td>K09</td>
<td>0.0 to 400.0 °C</td>
<td>KC2</td>
<td>32.0 to 752.0 °F</td>
</tr>
<tr>
<td></td>
<td>K35</td>
<td>0.0 to 400.0 °C</td>
<td>KC1</td>
<td>32.0 to 752.0 °F</td>
</tr>
<tr>
<td>J</td>
<td>J02</td>
<td>0.0 to 400 °C</td>
<td>JC2</td>
<td>32 to 752 °F</td>
</tr>
<tr>
<td></td>
<td>J04</td>
<td>0 to 400 °C</td>
<td>JC1</td>
<td>32 to 1472 °F</td>
</tr>
<tr>
<td></td>
<td>J15</td>
<td>0.0 to 200 °C</td>
<td>JB9</td>
<td>32 to 2501 °F</td>
</tr>
<tr>
<td></td>
<td>J09</td>
<td>0.0 to 400.0 °C</td>
<td>JC4</td>
<td>32.0 to 752.0 °F</td>
</tr>
<tr>
<td></td>
<td>J27</td>
<td>0.0 to 400.0 °C</td>
<td>JC3</td>
<td>32.0 to 752.0 °F</td>
</tr>
<tr>
<td>T</td>
<td>T08</td>
<td>0.0 to 400.0 °C</td>
<td>TB9</td>
<td>32 to 752 °F</td>
</tr>
<tr>
<td></td>
<td>T09</td>
<td>0 to 200 °C</td>
<td>TC1</td>
<td>32.0 to 1472 °F</td>
</tr>
<tr>
<td></td>
<td>T16</td>
<td>0.0 to 200 °C</td>
<td>TB8</td>
<td>32 to 2501 °F</td>
</tr>
<tr>
<td></td>
<td>T06</td>
<td>0.0 to 400.0 °C</td>
<td>TC3</td>
<td>32.0 to 752.0 °F</td>
</tr>
<tr>
<td></td>
<td>T19</td>
<td>0.0 to 400.0 °C</td>
<td>TC2</td>
<td>32.0 to 752.0 °F</td>
</tr>
<tr>
<td>E</td>
<td>E01</td>
<td>0 to 800 °C</td>
<td>EA8</td>
<td>32 to 1472 °F</td>
</tr>
<tr>
<td></td>
<td>E02</td>
<td>0 to 1000 °C</td>
<td>EA7</td>
<td>32 to 1832 °F</td>
</tr>
<tr>
<td>S</td>
<td>S05</td>
<td>0 to 1768 °C</td>
<td>SA6</td>
<td>32 to 3214 °F</td>
</tr>
<tr>
<td></td>
<td>R06</td>
<td>0 to 1768 °C</td>
<td>RA6</td>
<td>32 to 3214 °F</td>
</tr>
<tr>
<td>N</td>
<td>N02</td>
<td>0 to 1300 °C</td>
<td>NA6</td>
<td>32 to 2372 °F</td>
</tr>
<tr>
<td>B</td>
<td>B03</td>
<td>0 to 1800 °C</td>
<td>BB1</td>
<td>32 to 3272 °F</td>
</tr>
<tr>
<td>PL</td>
<td>A02</td>
<td>0 to 1390 °C</td>
<td>AA6</td>
<td>32 to 2372 °F</td>
</tr>
<tr>
<td></td>
<td>W03</td>
<td>0 to 2300 °C</td>
<td>WA9</td>
<td>32 to 4172 °F</td>
</tr>
</tbody>
</table>

[RTD input]

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Range</th>
<th>Code</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt100</td>
<td>D17</td>
<td>0 to 400 °C</td>
<td>DC5</td>
<td>32 to 752 °F</td>
</tr>
<tr>
<td></td>
<td>D33</td>
<td>0 to 850 °C</td>
<td>DC4</td>
<td>32 to 1562 °F</td>
</tr>
<tr>
<td></td>
<td>D16</td>
<td>0.0 to 400.0 °C</td>
<td>DC7</td>
<td>32.0 to 752.0 °F</td>
</tr>
<tr>
<td></td>
<td>D28</td>
<td>-200.0 to +400.0 °C</td>
<td>DC6</td>
<td>-328.0 to +752.0 °F</td>
</tr>
<tr>
<td>Jpt100</td>
<td>P17</td>
<td>0 to 400 °C</td>
<td>PC5</td>
<td>32 to 752 °F</td>
</tr>
<tr>
<td></td>
<td>P23</td>
<td>0 to 800 °C</td>
<td>PC4</td>
<td>32 to 1112 °F</td>
</tr>
<tr>
<td></td>
<td>P16</td>
<td>0.0 to 400.0 °C</td>
<td>PC7</td>
<td>32.0 to 752.0 °F</td>
</tr>
<tr>
<td></td>
<td>P28</td>
<td>-200.0 to +400.0 °C</td>
<td>PC6</td>
<td>-328.0 to +752.0 °F</td>
</tr>
</tbody>
</table>

[Voltage/Current input]

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Type</th>
<th>Code</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>201</td>
<td>0 to 100 mA DC</td>
<td>401</td>
<td>0 to 5 V DC</td>
</tr>
<tr>
<td></td>
<td>501</td>
<td>0 to 10 V DC</td>
<td>601</td>
<td>1 to 5 V DC</td>
</tr>
<tr>
<td>Current</td>
<td>701</td>
<td>0 to 20 mA DC</td>
<td>801</td>
<td>4 to 20 mA DC</td>
</tr>
</tbody>
</table>

(4) Control output (CH1), (5) Control output (CH2)

- M: Relay contact output
- V: Voltage pulse output
- 0/12 V DC
- 0 to 5 V DC
- 1 to 5 V DC
- 0 to 20 mA DC
- 4 to 20 mA DC

(6) CT type (Each channel common code)

- P: CTL-6-P-N (for 0 to 30 A)
- S: CTL-12-S56-10L-N (for 0 to 100 A)

(7) DeviceNet connector type

- N: Open-style connector (Unshielded type)
- 1: Micro-style connector (Shield type)

For Heat/Cool PID control (V-TIO-K), input channel 2 becomes unused.
For Heat/Cool PID control (V-TIO-K), Control output (CH1) corresponds to the heating output and Control output (CH2) corresponds to the cooling output.

Heater break alarm (HBA) function can not be used when control output is voltage/current output.

Accessories

- End Plate .. 2
- Joint connector cover ... 2
- Instruction Manual (IMS01P10-ED) 2
- EDS file (download free) * .. 1

* The EDS file can be downloaded from the official RKC website:

If any of the products are missing, damaged, or if your manual is incomplete, please contact RKC sales office or the agent.

The manuals can be downloaded from the official RKC website:
3. PARTS DESCRIPTION

- **Indication lamps 1**
 - FAIL/RUN (for temperature control)
 - When normally: A green lamp turns on (RUN)
 - When abnormally: A red lamp turns on (FAIL)
 - RX/TX (for host communication using host communication terminals)
 - A green lamp turns on during data send and receive
 - EVENT 1 to 4
 - Display various states by setting:
 - ON state: A green lamp turns on
 - Event 1 state, Event 2 state, Comprehensive event state, Output state, Control state, Execution segment state, Time signal state

- **Indication lamps 2**
 - FAIL/RUN (for DeviceNet communication)
 - When abnormally: A red lamp turns on
 - Communication environment setting mode by the switch:
 - A red lamp flashes
 - RUN (for DeviceNet communication)
 - When normally: A green lamp turns on
 - Memory backup error: A green lamp flashes slowly
 - Module configuration error: A green lamp flashes slowly
 - Communication error: A green lamp flashes slowly
 - Data collection just after the power is turned on:
 - A green lamp flashes rapidly
 - NS or NET (Network status)
 - Network is operating normally: A green lamp turns on
 - Network communications are not possible: A red lamp turns on

4. COMMUNICATION SETTING

Set communication setting before mounting and wiring of SRV.

CAUTION

Do not separate the module mainframe from the terminal base with the power turned on. If separated, adjusted data may be destroyed; control be stopped, and no return can be made.

4.1 Address Setting

- **Node address setting**
 - To identify each device connected to the network, it is necessary to set a different address to each device (node). For the DeviceNet, as it is possible to connect up to 64 devices including a master to the network, node address (MAC ID) from 0 to 63 can be set. For this setting, use a small slotted screwdriver.

- **Module address setting**
 - Set a module address (temperature control side). For this setting, use a small slotted screwdriver.
Set the module address such that it is different to the other addresses on the same line. Otherwise, problems or malfunction may result.

The previous page figure is open-style connector type. The figure of micro-style connector type is the same as an open-style connector type.

4.2 DeviceNet Communication Setting

Communication speed setting
Set the communication speed of DeviceNet. For this setting, use a small slotted screwdriver.

![DeviceNet communication speed setting switch](image)

Setting range: 0: 125 kbps
1: 250 kbps
2: 500 kbps
(Factory set value: 0)

The above figure is open-style connector type. The figure of micro-style connector type is the same as an open-style connector type.

When any number between 3 and 9 is set, the communication speed becomes “500 kbps.”

Number of communication data items when conducting polling I/O communication and host communication protocol setting

With the DIP switch 1 which there is on the left side of module, set the number of communication data items when conducting DeviceNet polling I/O communication, host communication protocol and internal communication mode.

![DIP switch 1](image)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>Host communication (RS-485) speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>2400 bps</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>9600 bps</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>19200 bps</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>38400 bps</td>
</tr>
</tbody>
</table>

Factory set value: 38400 bps

<table>
<thead>
<tr>
<th>4</th>
<th>5</th>
<th>Number of communication data items when conducting polling I/O communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>8 words</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>26 words</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>46 words</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>100 words</td>
</tr>
</tbody>
</table>

Factory set value: 8 words

Internal communication mode selection

<table>
<thead>
<tr>
<th>7</th>
<th>Internal communication mode selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>DeviceNet communication mode</td>
</tr>
<tr>
<td>ON</td>
<td>Host communication (RS-485) mode</td>
</tr>
</tbody>
</table>

Factory set value: DeviceNet communication mode

Switch No. 3: OFF fixed (Do not change this one)
Switch No. 8: OFF fixed (Do not change this one)
Switch No. 1, 2, 6 and 7 are used for the setting related to host communication on the DeviceNet side. When used only for DeviceNet communication, do not change the factory set values.

For the host communication of DeviceNet side, refer to the Appendix B of Module Type Controller SRV DeviceNet Communication Instruction Manual (IMS01P11-E).

4.3 Host Communication Setting

(temperature control side)

With the DIP switch 2 which there is on the right side of module, set the communication speed, data bit configuration, protocol, and termination resistor of internal data bus for host communication of temperature control side.

![DIP switch 2](image)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>Host communication (RS-485) speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>2400 bps</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>9600 bps</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>19200 bps</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>38400 bps</td>
</tr>
</tbody>
</table>

Factory set value: 38400 bps

<table>
<thead>
<tr>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Data bit configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>Data 8-bit, without parity, Stop 1-bit</td>
</tr>
</tbody>
</table>

Factory set value: Data 8-bit, without parity, Stop 1-bit

<table>
<thead>
<tr>
<th>6</th>
<th>Host communication protocol selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>RKC communication</td>
</tr>
<tr>
<td>ON</td>
<td>Modbus</td>
</tr>
</tbody>
</table>

Factory set value: Modbus

Switch No. 7: OFF fixed (Do not change this one)
Switch No. 8: OFF fixed (Do not change this one)

When connecting two or more modules (V-TIO-A, V-TIO-B, V-TIO-C or V-TIO-D) to the module (V-TIO-J or V-TIO-K), match all of the switch No. 1 to 6 settings with the internal settings of the module (V-TIO-J or V-TIO-K).

When no host communication terminals are used, it is not necessary to set the DIP switch 2.

For host communication using host communication terminals, refer to the Appendix B of Module Type Controller SRV DeviceNet Communication Instruction Manual (IMS01P11-E) and the Module Type Controller SRV Communication Instruction Manual (IMS01P01-E).
5. MOUNTING

5.1 Mounting Cautions
(1) This instrument is intended to be used under the following environmental conditions. (IEC61010-1) [OVERVOLTAGE CATEGORY II, POLLUTION DEGREE 2]
(2) Use this instrument within the following environment conditions:
• Allowable ambient temperature: −10 to +50 °C
• Allowable ambient humidity: 5 to 95 % RH
 (Absolute humidity: MAX.W.C 29 g/m³ dry air at 101.3 kPa)
• Installation environment conditions: Indoor use
 Altitude up to 2000 m
(3) Avoid the following when selecting the mounting location.
• Rapid changes in ambient temperature, which may cause condensation.
• Corrosive or inflammable gases.
• Direct vibration or shock to the mainframe.
• Water, oil, chemicals, vapor or steam splashes.
• Excessive dust, salt or iron particles.
• Excessive induction noise, static electricity, magnetic fields or noise.
• Direct air flow from an air conditioner.
• Exposure to direct sunlight.
• Excessive heat accumulation.
(4) Mounting consideration
• Install the module 200 mm away from the main power line.
• Ensure at least 50 mm space on top and bottom of the control unit for maintenance and environmental reasons.
(5) If this instrument is permanently connected to equipment, it is important to include a switch or circuit-breaker into the installation. This should be in close proximity to the equipment and within easy reach of the operator. It should be marked as the disconnecting device for the equipment.

5.2 Dimensions

The above figure is open-style connector type. The figure of micro-style connector type is the same as an open-style connector type.

• Depth in connector mounting
 Conduct installation in consideration of the sizes of the connector and cable when connector-connected.

[Usage example of micro-style connector] (Unit: mm)

5.3 DIN rail Mounting

Mounting procedures
1. Pull down the mounting bracket at the bottom of the module (A). Attach the hooks on the top of the module to the DIN rail and push the lower section into place on the DIN rail (B).

2. Slide the mounting bracket up to secure the module to the DIN rail.

End Plate mounting
Hold tight both ends of the modules jointed together with the end plates and then fix the end plates with screws. Even if only one V-TIO-J/V-TIO-K module is used, also hold tight both ends of the module with the end plates.

Removing procedures
Pull down a mounting bracket with a slotted screwdriver (A). Lift the module from bottom, and take it off (B).
5.4 Panel Mounting

- Mounting procedures
 1. Pull down the mounting bracket (A) until locked and that a mounting hole appears.
 2. Prepare one mounting bracket per module (B) sold separately (KSRX-55) and then insert it in the rear of the terminal board at top of the module until locked but a mounting hole does not disappear.
 3. Mount each module directly on the panel with screws which are inserted in the mounting holes of the top and bottom mounting brackets.

Recommended tightening torque: 0.3 N⋅m (3 kgf-cm)

The customer needs to provide the M3 size screws. Select the screw length that matches the mounting panel.

(B) Insert

Mounting bracket (Sold separately) [KSRX-55]

M3

(A) Pull down

Mounting holes

Mounting dimensions

30 ± 0.2

(35.25 ± 0.2)

Module of 40.5 mm wide

Module of 30 mm wide

5.5 Jointing Each Module

Up to 30 modules (V-TIO-A, V-TIO-B, V-TIO-C or V-TIO-D) can be connected to one module (V-TIO-J or V-TIO-K). Join these modules according to the following procedure.

- Joining procedures
 1. Mount the modules on the DIN rail and then joint these modules together with the joint connector while sliding the relevant module.
 2. Lift each of the joint tabs located at the top and bottom of the module and then insert it in the slot of the adjacent module to fix these two modules.

For panel mounting, first joint each module and then mount it on the panel.

Joint connector

When viewed from top

Joint tab

Joint tab insertion slot

There is one joint tab at each of the top and bottom of one module. Therefore, fix two adjacent modules with these two joint tabs.

6. WIRING

WARNING

To prevent electric shock or instrument failure, do not turn on the power until all wiring is completed. Make sure that the wiring is correct before applying power to the instrument.

6.1 Wiring Cautions

- For thermocouple input, use the appropriate compensation wire.
- For RTD input, use low resistance lead wire with no difference in resistance between the three lead wires.
- To avoid noise induction, keep input signal wire away from instrument power line, load lines and power lines of other electric equipment.
- If there is electrical noise in the vicinity of the instrument that could affect operation, use a noise filter.
 - Shorten the distance between the twisted power supply wire pitches to achieve the most effective noise reduction.
 - Always install the noise filter on a grounded panel. Minimize the wiring distance between the noise filter output and the instrument power supply terminals to achieve the most effective noise reduction.
 - Do not connect fuses or switches to the noise filter output wiring as this will reduce the effectiveness of the noise filter.
- Power supply wiring must be twisted and have a low voltage drop.
- For an instrument with 24 V power supply, supply power from a SELV circuit.
- A suitable power supply should be considered in end-use equipment. The power supply must be in compliance with a limited-energy circuits (maximum available current of 8 A).
- Use the solderless terminal appropriate to the screw size (M3).
- Make sure that the any wiring such as solderless terminal is not in contact with the adjoining terminals.

6.2 Terminal Configuration

<table>
<thead>
<tr>
<th>Internal communication</th>
<th>Host communication</th>
<th>CT input</th>
<th>Control output 1</th>
<th>Control output 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-485</td>
<td>CT1</td>
<td>Voltage pulse/Current</td>
<td>Relay contact</td>
<td>Voltage pulse/Current</td>
</tr>
<tr>
<td>CT2</td>
<td>OUT1</td>
<td>Voltage/Current</td>
<td></td>
<td>Voltage/Current</td>
</tr>
<tr>
<td></td>
<td>OUT1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper-side terminal</td>
<td>Ground</td>
<td>Power supply</td>
<td>Input channel 1</td>
<td>Input channel 2</td>
</tr>
<tr>
<td>Lower-side terminal</td>
<td></td>
<td>RTD</td>
<td>RTD</td>
<td>RTD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thermocouple</td>
<td>Thermocouple</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voltage/Current</td>
<td>Voltage/Current</td>
<td></td>
</tr>
</tbody>
</table>

Power supply wiring must be twisted and have a low voltage drop. Always install the noise filter on a grounded panel. Minimize the wiring distance between the noise filter output and the instrument power supply terminals to achieve the most effective noise reduction.

Recommended tightening torque: 0.4 N⋅m (4 kgf-cm)
For Heat/Cool PID control (V-TIO-K), input channel 2 becomes unused.

For Heat/Cool PID control (V-TIO-K), Control output (CH1) corresponds to the heating output and Control output (CH2) corresponds to the cooling output.

Heater break alarm (HBA) function cannot be used when control output is Voltage/Current output.

Terminal No. 11 is not used.

6.3 Pin Layout of Connector

- **Open-style connector**

 ![Open-style connector diagram]

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Signal name</th>
<th>Symbol</th>
<th>Cable color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power supply, minus (−)</td>
<td>V−</td>
<td>Black</td>
</tr>
<tr>
<td>2</td>
<td>Communication data, low</td>
<td>CAN_L</td>
<td>Blue</td>
</tr>
<tr>
<td>3</td>
<td>Shield</td>
<td>Drain</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>Communication data, high</td>
<td>CAN_H</td>
<td>White</td>
</tr>
<tr>
<td>5</td>
<td>Power supply, plus (+)</td>
<td>V+</td>
<td>Red</td>
</tr>
</tbody>
</table>

- **Micro-style connector**

 ![Micro-style connector diagram]

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Signal name</th>
<th>Symbol</th>
<th>Cable color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shield</td>
<td>Drain</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>Power supply, plus (+)</td>
<td>V+</td>
<td>Red</td>
</tr>
<tr>
<td>3</td>
<td>Power supply, minus (−)</td>
<td>V−</td>
<td>Black</td>
</tr>
<tr>
<td>4</td>
<td>Communication data, high</td>
<td>CAN_H</td>
<td>White</td>
</tr>
<tr>
<td>5</td>
<td>Communication data, low</td>
<td>CAN_L</td>
<td>Blue</td>
</tr>
</tbody>
</table>

- **Connection plugs**

 SRXDN-01 (Sold separately)
 MSTB2.5/S-STF-5.0BAUM (PHOENIX CONTACT, Inc.) or equal

- **Multi-drop type (recommended models)**

 TMSTBP2.5/S-STF-5.0BAUM (PHOENIX CONTACT, Inc.)

7. SPECIFICATIONS

- **Inputs**

 Number of inputs: 2 points
 - Isolated between each channel:
 Thermocouple input, Voltage (low) input
 Not isolated between each channel:
 RTD input, Voltage (high) input
 Current input
 - Input type:
 • Thermocouple: K, J, T, S, R, E, B, N (JIS-C1602-1995), PLII (NBS), W5Re/W26Re (ASTM-E988-96)
 • RTD: Pt100 (JIS-C1604-1997), JPt100 (JIS-C1604-1989, Pt100 of JIS-C1604-1981)
 • Voltage (low): 0 to 100 mV
 • Voltage (high): 0 to 5 V, 0 to 10 V, 1 to 5 V
 • Current: 0 to 20 mA, 4 to 20 mA
 (Input impedance: 250 Ω)
 - Sampling cycle: 500 ms
 - PV bias: –Input span to +Input span
 - CT input: 2 points
 • 0.0 to 30.0 A (CTL-6P-N) or 0.0 to 100.0 A (CTL-12-S56-10L-N)

- **Outputs**

 Number of outputs: 2 points
 - Isolated between input and output, and between output and power supply
 - Output type:
 • Relay contact: 250 V AC, 3 A (Resistive load)
 1a contact
 Electrical life: 300,000 times or more
 (Rated load)
 • Voltage pulse: 0/12 V DC
 (Load resistance 600 Ω or more)
 • Current: 0 to 20 mA DC, 4 to 20 mA DC
 (Load resistance 600 Ω or less)
 • Voltage: 0 to 5 V DC, 0 to 10 V DC, 1 to 5 V DC
 (Load resistance 1 kΩ or more)

- **Control action**

 Number of controls: 2 points
 - Control method: Brilliant PID control
 - Reverse action or direct action is selectable
 (Specify when ordering)
 - Heat/Cool control is selectable
 (Specify when ordering)
 - Additional function: Autotuning function

- **Events**

 Number of events: 2 points/channel
 - Event type:
 Temperature event:
 Deviation high, Deviation low, Deviation high/low, Band, Process high, Process low
 Heater break alarm (HBA), Control loop break alarm (LBA), Burnout, Temperature rise completion

- **Heater break alarm (HBA) function**

 Number of HBA: 2 points
 - Setting range: 0.0 to 100.0 A (0.0 A: OFF)
 - Additional function: Number of event delay times: 1 to 255 times

 Continued on the next page.
Continued from the previous page.

- **Control loop break alarm (LBA) function**

 Number of LBA: 2 points
 LBA time: 1 to 7200 seconds
 LBA deadband (LBD) setting: 0 to Input span

- **DeviceNet communication**

 Protocol: DeviceNet
 Connection method: Multi-drop connection, T-branch connection
 (Terminating resistor [121 Ω, 1/4 W] is necessary)
 Communication speed: 125 kbps, 250 kbps, or 500 kbps
 Error control: CRC error, Node address (MAC ID) duplication check
 Maximum number of connection nodes: 64 (including master)

- **Host communication**

 (using host communication terminals)

 Communication interface: Based on RS-485, EIA standard
 Communication protocol: RKC communication (ANSI X3.28-1976 subcategories 2.5 and A4) or Modbus
 Maximum connections: 32 instruments * maximum including a host computer
 * As each of the DeviceNet board and temperature control board incorporated in the V-TIO-J/V-TIO-K module is handled as one unit, one V-TIO-J/V-TIO-K module corresponds two modules.

- **Others**

 Power supply voltage: 24 V DC
 Power supply voltage range: 21.6 to 26.4 V DC
 Current consumption: 170 mA max./module
 Allowable ambient temperature: −10 to +50 °C
 Allowable ambient humidity: 5 to 95 %RH
 Absolute humidity: MAX.W.C 29 g/m³ dry air at 101.3 kPa
 Weight: Open-style connector type: Approx. 250 g
 Micro-style connector type: Approx. 270 g

- **Standard**

 Safety standard: UL: UL61010A-1
 CSA: CAN/CSA-C22.2 No1010.1
 CE marking: LVD: EN61010-1
 OVERVOLTAGE CATEGORY II,
 POLLUTION DEGREE 2,
 Class II (Reinforced insulation)
 EMC:EN61326-1
 C-Tick: EN55011

- DeviceNet is a registered trademark of Open DeviceNet Vendor Association, Inc.
- Modbus is a registered trademark of Schneider Electric.
- Company names and product names used in this manual are the trademarks or registered trademarks of the respective companies.
- This product has been self-tested by RKC at DeviceNet Protocol Conformance Test Software Version A-17.

The first edition: AUG. 2004 [IMQ00]
The second edition: JAN. 2011 [IMQ00]