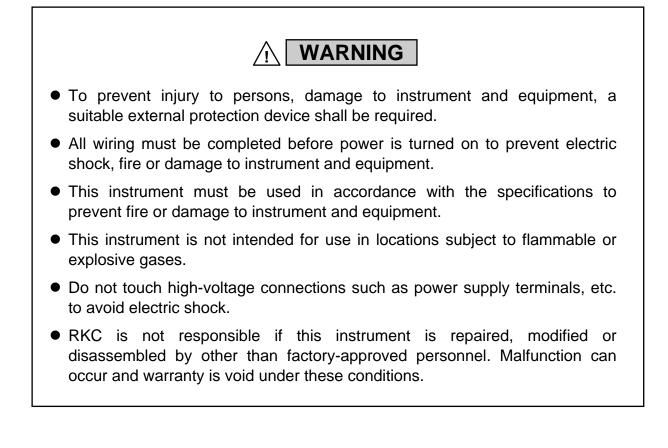
DeviceNet Communication Converter

Instruction Manual

<u>RKC</u>[®] RKC INSTRUMENT INC.

IMR01L01-E6


- DeviceNet is a registered trademark of Open DeviceNet Vender Association, Inc.
- The name of each programmable controller (PLC) means the products of each manufacturer.
- Company names and product names used in this manual are the trademarks or registered trademarks of the respective companies.
- This product has been self-tested by RKC at DeviceNet Protocol Conformance Test Software Version A-17.

All Rights Reserved, Copyright © 2001, RKC INSTRUMENT INC.

Thank you for purchasing this RKC product. In order to achieve maximum performance and ensure proper operation of your new instrument, carefully read all the instructions in this manual. Please place the manual in a convenient location for easy reference.

SYMBOLS

- **WARNING** : This mark indicates precautions that must be taken if there is danger of electric shock, fire, etc., which could result in loss of life or injury.
- **CAUTION** : This mark indicates that if these precautions and operating procedures are not taken, damage to the instrument may result.
 - : This mark indicates that all precautions should be taken for safe usage.
- : This mark indicates important information on installation, handling and operating procedures.
- : This mark indicates supplemental information on installation, handling and operating procedures.
- : This mark indicates where additional information may be located.

CAUTION

- This product is intended for use with industrial machines, test and measuring equipment. (It is not designed for use with medical equipment and nuclear energy.)
- This is a Class A instrument. In a domestic environment, this instrument may cause radio interference, in which case the user may be required to take additional measures.
- This instrument is protected from electric shock by reinforced insulation. Provide reinforced insulation between the wire for the input signal and the wires for instrument power supply, source of power and loads.
- Be sure to provide an appropriate surge control circuit respectively for the following:
 - If input/output or signal lines within the building are longer than 30 meters.
 - If input/output or signal lines leave the building, regardless the length.
- This instrument is designed for installation in an enclosed instrumentation panel. All high-voltage connections such as power supply terminals must be enclosed in the instrumentation panel to avoid electric shock by operating personnel.
- All precautions described in this manual should be taken to avoid damage to the instrument or equipment.
- If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.
- All wiring must be in accordance with local codes and regulations.
- All wiring must be completed before power is turned on to prevent electric shock, instrument failure, or incorrect action. The power must be turned off before repairing work for input break and output failure including
- replacement of sensor, contactor or SSR, and all wiring must be completed before power is turned on again.
- To prevent instrument damage as a result of failure, protect the power line and the input/output lines from high currents with a suitable overcurrent protection device with adequate breaking capacity such as a fuse, circuit breaker, etc.
- Prevent metal fragments or lead wire scraps from falling inside instrument case to avoid electric shock, fire or malfunction.
- Tighten each terminal screw to the specified torque found in the manual to avoid electric shock, fire or malfunction.
- For proper operation of this instrument, provide adequate ventilation for heat dispensation.
- Do not connect wires to unused terminals as this will interfere with proper operation of the instrument.
- Turn off the power supply before cleaning the instrument.
- Do not use a volatile solvent such as paint thinner to clean the instrument. Deformation or discoloration will occur. Use a soft, dry cloth to remove stains from the instrument.
- To avoid damage to instrument display, do not rub with an abrasive material or push front panel with a hard object.
- Do not connect modular connectors to telephone line.
- When high alarm with hold action/re-hold action is used for Alarm function, alarm does not turn on while hold action is in operation. Take measures to prevent overheating which may occur if the control device fails.

NOTICE

- This manual assumes that the reader has a fundamental knowledge of the principles of electricity, process control, computer technology and communications.
- The figures, diagrams and numeric values used in this manual are only for purpose of illustration.
- RKC is not responsible for any damage or injury that is caused as a result of using this instrument, instrument failure or indirect damage.
- RKC is not responsible for any damage and/or injury resulting from the use of instruments made by imitating this instrument.
- Periodic maintenance is required for safe and proper operation of this instrument. Some components have a limited service life, or characteristics that change over time.
- Every effort has been made to ensure accuracy of all information contained herein. RKC makes no warranty expressed or implied, with respect to the accuracy of the information. The information in this manual is subject to change without prior notice.
- No portion of this document may be reprinted, modified, copied, transmitted, digitized, stored, processed or retrieved through any mechanical, electronic, optical or other means without prior written approval from RKC.

CONTENTS

	Page
1.	OUTLINE1
	1.1 Product Outline
	1.1.1 Communication ports2
	1.1.2 EDS file
	1.2 Model Code
	1.3 Parts Description5
2.	SPECIFICATIONS8
3.	MOUNTING11
	3.1 Mounting Environment11
	3.2 Dimensions12
	3.3 Mounting the Mother Block13
	3.4 Mounting the Module Mainframe15
	3.5 Removing the Module Mainframe
4.	WIRING
	4.1 Wiring Cautions
	4.2 Terminal Configuration
	4.3 Connections
	4.3.1 Connection to DeviceNet19
	4.3.2 Connection to RKC controllers22
5.	SETTING41
	5.1 DeviceNet Setting
	5.1.1 Node address setting
	5.1.2 DeviceNet communication speed setting
	5.2 Connection Controller and Communication Mode Setting
	5.3 Controller Communication Setting

6. DeviceNet COMMUNICATIONS	Page 48
6.1 Features and Functionality	48
6.2 Communication Method	49
6.2.1 Controller communication items setting	50
6.2.2 Polling I/O communication	60
6.2.3 Explicit message communication	64
6.3 Communication Items List	68
6.3.1 SR Mini HG	68
6.3.2 CB100/400/500/700/900	73
6.3.3 REX-F400/700/900	74
6.3.4 SA100/200	
6.3.5 MA900/901	78
6.3.6 LE100	80
6.3.7 REX-PG410	83

7. USAGE EXAMPLE	84
7.1 Handling Procedures	84
7.2 System Configuration	85
7.3 Hardware Setting	86
7.4 Communication Items Setting	
7.5 Sample Programs	
7.5.1 Polling I/O communication (When the SYSMAC CS1)	
7.5.2 Polling I/O communication (When the Control Logix 5550)	93
7.5.3 Explicit message communication	100

8. TROUBLESHOOTING1	05
---------------------	----

APPENDIX	
A. Device Profiles A.1 Basic data A.2 Object mounting	
 B. Signal Description and Wiring Diagram of COM.PORT1 B.1 RS-232C B.2 RS-422A 	119

1. OUTLINE

This manual describes the specifications, mounting, wiring, switch setting and data details for the **COM-H**.

1.1 Product Outline

The COM-H DeviceNet communication converter (hereafter called "COM-H") is a communication converter used to connect the DeviceNet that is a multivendor compatible open field network to our RKC controllers (SR Mini HG SYSTEM, REX-F400/700/900, CB100/400/500/700/900, SA100/200, MA900/901, LE100, REX-PG410).

On the DeviceNet, a programmable controller (hereafter called "PLC") or personal computer becomes a master device, while the COM-H, a slave device.

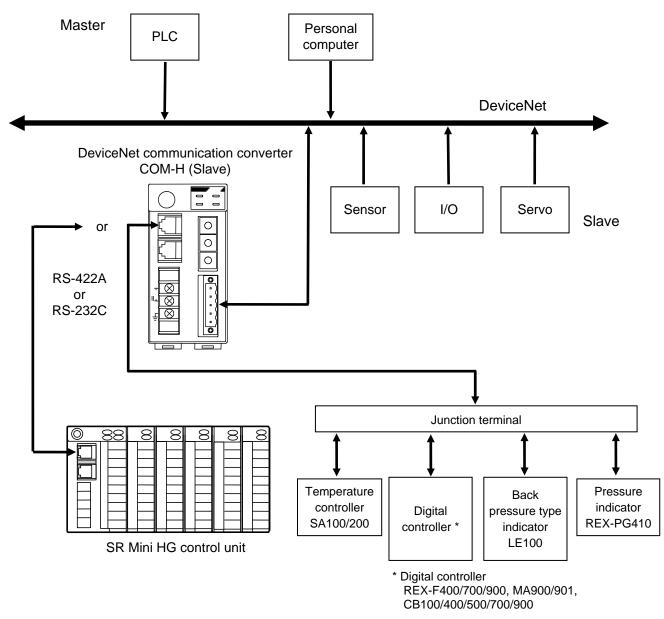


Fig. 1-1 System configuration example

1.1.1 Communication ports

COM-H has the following two kinds of communication ports.

DeviceNet communication port (COM. PORT3)

This is a port to be connected to DeviceNet. There is a 2 type of an open-style connector of an unsealed type and a micro-style connector (optional) of a sealed type.

For DeviceNet, refer to the home page of ODVA (Open DeviceNet Vender Association). URL: http://www.odva.org

RKC Controller communication port (COM. PORT1)

This port is a port for RKC standard communication to use for connection with SR Mini HG, REX-F400/700/900, CB100/400/500/700/900, SA100/200, MA900/901, LE100 or REX-PG410.

Cannot be connection that mixed SR Mini HG with REX-F400/700/900, CB100/400/500/700/900, SA100/200, MA900/901, LE100 and REX-PG410.

Connectable controller

• SR Mini HG

One SR Mini HG control unit can connect for one COM-H.

Modules (names/model codes) that can be configured by the SR Mini HG to be connected to the COM-H are as follows.

• Power supply/CPU module:	H-PCP-A, H-PCP-B, H-PCP-J
• Temperature control module:	H-TIO-A, H-TIO-B, H-TIO-C, H-TIO-D, H-TIO-E, H-TIO-F,
	H-TIO-G, H-TIO-H, H-TIO-J, H-TIO-P, H-TIO-R
• Current transformer input module:	H-CT-A
• DO module:	H-DO-A, H-DO-B, H-DO-C
• DI module:	H-DI-A
• Analog input module:	H-AI-A, H-AI-B
• Analog output module:	H-AO-A

For SR Mini HG module configuration method, refer to SR Mini HG SYSTEM Hardware Quick Manual (IMS01V01-E^{III}), SR Mini HG SYSTEM Hardware Instruction Manual (IMSRM15-E^{III}) or Power supply/CPU module H-PCP-J Instruction Manual (IMS01J02-E^{III}). REX-F400/700/900
 CB100/400/500/700/900
 SA100/200
 LE100
 REX-PG410

Up to 24 controllers can be connected to one COM-H.

• MA900/901

Up to six MA900 (4 channel specification) or up to three MA901 (8 channel specification) can be connected to one COM-H.

The REX-F400/700/900, CB100/400/500/700/900, SA100/200 and MA900/901 can be connected together with the LE100. The maximum number of controllers when connected together is 24 in total. However for the MA900/901, one MA900 is counted as four controllers and one MA901, as eight controllers.

Cannot be connection that mixed SR Mini HG with REX-F400/700/900, CB100/400/500/700/900, SA100/200, MA900/901, LE100 and REX-PG410.

1.1.2 EDS file

The EDS file for COM-H can be downloaded from the official RKC website:

http://www.rkcinst.com/english/download/field_network.htm.

Use the EDS file when recognizing the COM-H on the DeviceNet by using a configurator (tool used to set a master or slave environment on the DeviceNet) of each manufacturer.

For details, refer to Configuration Tool Instruction Manual of each company or Instruction Manual of the master product.

1.2 Model Code

The model code for the instrument you received is listed below. Please confirm that you have received the correct instrument by checking the nameplate, located on the left side of the COM-H, with this list. If the product you received is not the one ordered, contact RKC sales office or agent for replacement.

DeviceNet communication converter

COM - H - 3 - 90 - □ - □ (1) (2) (3) (4)

(1) Power supply type

3: 24 V DC

(2) Corresponding RKC controller

90: SR Mini HG SYSTEM REX-F400/700/900 CB100/400/500/700/900 SA100/200 MA900/901 LE100 REX-PG410

(3) Controller communication *

- 1: RS-232C (RKC communication)
- 4: RS-422A (RKC communication)

* It is required to coincide with the communication interface for the corresponding RKC controller. When uses the controllers of RS-485 interface, wires it with TA-RA and TB-RB with the communication terminal of the controller.

(4) Connector types

- N: Open-style connector (Unshielded type)
- 1: Micro-style connector (Shield type)

Modular connector cables (Sold separately)

W - BF - 01 - 🗆 🗆 🗆

W-BF-01: Used to connect the REX-F400/700/900, CB100/400/500/700/900, SA100/200, MA900/901, LE100 or REX-PG410. If noise is a factor, customer should use a twisted pair cable (not included) or something to that effect.

W - BF - 02 - 🗆 🗆 🗆

W-BF-02: Used to connect the SR Mini HG. If noise is a factor, customer should use a twisted pair cable (not included) or something to that effect.

1.3 Parts Description

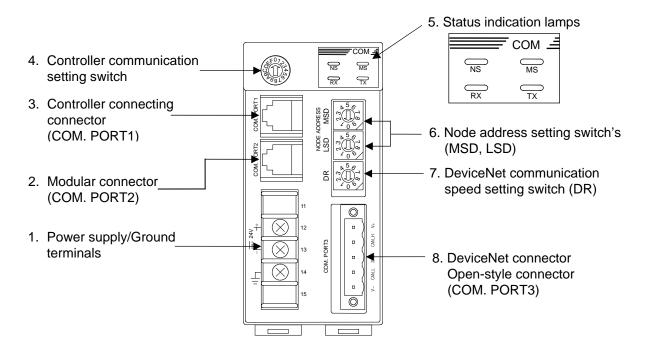


Fig. 1-2 Front view of open-style connector type

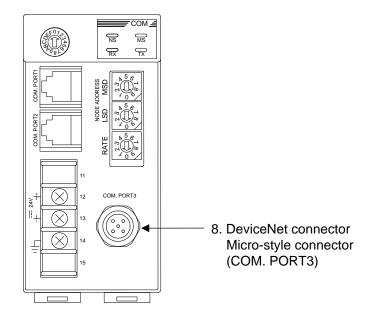


Fig. 1-3 Front view of micro-style connector type

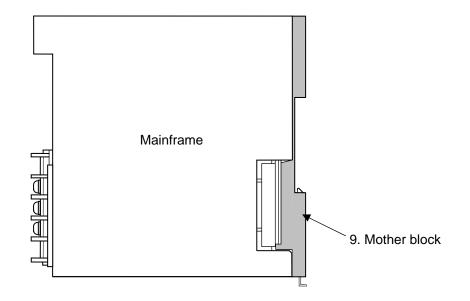


Fig. 1-4 Right side view

No.	Name	Description
1	Power supply/Ground terminals	Power supply terminals and Ground terminal
2	Modular connector (COM. PORT2)	Unused
3	Controller connecting connector (COM. PORT1)	Controller communication port (RS-422A or RS-232C)
4	Controller communication setting switch	Controller communication speed and data bit configuration setting switch
5	Status indication lamps	 NS (Network Status) OFF: Power supply OFF or DeviceNet is off line Flashing (Green): Network is operating normally, but communications have not yet been established ON (Green): Network is operating normally (communications established) Flashing (Red): Connection of one or more is timeout ON (Red): A fatal communications error has occurred Network communications are not possible Check for a node address duplication or Bus Off error

Continued on the next page.

Continued from the previous page.

No.	Name	Description
5	Status indication lamps	 MS (Module Status) OFF: Power is not spplied Flashing (Green): In activation, be checking communication with controller ON (Green): Normal operating status ON (Red): Watchdog timer error RX (Yellow) ON during the controller data is correctly received TX (Yellow) ON during the controller data is correctly sent
6	Node address setting switch's (MSD, LSD)	Set node address (MAC ID) number of the DeviceNet Setting range: 00 to 63 Upper-side (MSD): High-order digit setting (Set value × 10) Lower-side (LSD): Low-order digit setting (Set value × 1)
7	DeviceNet communication speed setting switch (DR or RATE)	DeviceNet communication speed setting switch
8	DeviceNet connector (COM. PORT3)	The communication port for DeviceNet connection
9	Mother block	Module DIN rail mounting connector

Various symbols are used on the equipment, they have the following meaning.

=== : Direct current

: Functional grounding terminal

: Reinforced insulation

: Safety precaution (Refer to the this Manual)

2. SPECIFICATIONS

DeviceNet communication

Protocol:	DeviceNet
Supported connection:	Polling I/O, Explicit message
Connection method:	Multi-drop connection, T-branch connection
	(Terminating resistor is necessary)
Communication speed:	125 kbps, 250 kbps, 500 kbps
	(Communication speed can be selected with switch)
	Factory set value: 125 kbps
Communication length:	Maximum naturals langth *

Maximum network length * Communication Maximum Cumulative Thin trunk Thick trunk speed drop length drop length length length 500 m or less 125 kbps 156 m or less 250 kbps 250 m or less 100 m or less 6 m or less 78 m or less 500 kbps 100 m or less 39 m or less

* The maximum of length between nodes

Maximum number of connection nodes:

	64 (including master)
Error control:	CRC error, Node address (MAC ID) duplication check

Controller communication

Communication interface:	Based on RS-422A, EIA standard
	Based on RS-232C, EIA standard
	Specify when ordering
Communication method:	Four-wire system, half-duplex multi-drop connection (RS-422A)
	Half-duplex point-to-point connection (RS-232C)
Protocol:	Based on ANSI X 3.28-1976 subcategories 2.5 and B1
Synchronous method:	Start/stop synchronous type
Communication speed:	4800 bps, 9600 bps, 19200 bps
	(Communication speed can be selected with switch)
	Factory set value: 9600 bps
Data bit configuration:	Start bit: 1
	Data bit: 7 or 8
	Parity bit: Without, Odd or Even
	Without for 8 data bits
	Stop bit: 1
Communication code:	ASCII 7-bit code

Number of connections:	Number of the controller that it can be connected to for one COM-H * - SR Mini HG: 1 unit - REX-F400/700/900:
	Up to 24 controllers
	- CB100/400/500/700/900:
	Up to 24 controllers
	- SA100/200: Up to 24 controllers
	- LE100: Up to 24 controllers
	- REX-PG410: Up to 24 controllers
	- MA900: Up to 6 controllers
	- MA901: Up to 3 controllers

* The REX-F400/700/900, CB100/400/500/700/900, SA100/200, MA900/901, LE100 and REX-PG410 can be connected together with the REX-PG410. The maximum number of controllers when connected together is 24 in total. However for the MA900/901, one MA900 is counted as four controllers and one MA901, as eight controllers. In addition cannot do the connection that mixed SR Mini HG with REX-F400/700/900, CB100/400/500/700/900, SA100/200, MA900/901, LE100 and REX-PG410.

Power input

Power supply voltage:	24 V DC (Rating)
Power supply voltage range:	21.6 to 26.4 V DC
	Ripple noise: 10 % (peak to peak) or less
Power consumption:	70 mA max.

■ Self-diagnostic

Check item:	Watchdog timer	
Action at self-diagnostic error:	MS lamp (red) ON	All the other display is OFF

General specifications

Insulation resistance:	Between power and ground terminals:	
	$20 \text{ M}\Omega$ or more at 500 V DC	
	Between communication and ground terminals:	
	$20 \text{ M}\Omega$ or more at 500 V DC	

Withstand voltage:	Between power and ground terminals:		
	1 minute at 1500 V AC		
	Between communication and ground terminals:		
	1 minute at 1000 V AC		
Withstand noise:	1500 V (peak to peak)		
	Pulse width: 1 µs		
	Rise time: 1 ns		
	By noise simulator		
Power failure:	A power failure of 50 ms or less will not affect the control action.		
Memory backup:	Backed up by non-volatile memory (EEPROM)		
	Number of writing: Approx. 100,000 times		
	Data storage period: Approx. 10 years		
Allowable ambient temperatures	e: 0 to 50 °C		
Allowable ambient humidity:	45 to 85 % RH		
	(Absolute humidity: MAX.W.C 29 g/m ³ dry air at 101.3 kPa)		
Installation environment condi	itions:		
	Indoor use, Altitude up to 2000 m		
Ambient operating atmosphere:	There should be neither corrosive gases nor much dust.		
Storage temperature range:	-20 to +50 °C		
Storage humidity range:	95 % RH or less (Non condensing)		
Dimensions:	48 (W) \times 96 (H) \times 100 (D) mm		
Weight:	Approx. 270 g		

3. MOUNTING

To prevent electric shock or instrument failure, always turn off the power before mounting or removing the instrument.

3.1 Mounting Environment

- (1) This instrument is intended to be used under the following environmental conditions. (IEC61010-1) [OVERVOLTAGE CATEGORY II, POLLUTION DEGREE 2]
- (2) Use this instrument within the following environment conditions:
 - Allowable ambient temperature: 0 to 50 °C
 - Allowable ambient humidity: 45 to 85 % RH
 - (Absolute humidity: MAX.W.C 29 g/m³ dry air at 101.3 kPa)
 - Installation environment conditions: Indoor use
 - Altitude up to 2000 m
- (3) Avoid the following conditions when selecting the mounting location:
 - Rapid changes in ambient temperature which may cause condensation.
 - Corrosive or inflammable gases.
 - Direct vibration or shock to the mainframe.
 - Water, oil, chemicals, vapor or steam splashes.
 - Excessive dust, salt or iron particles.
 - Excessive induction noise, static electricity, magnetic fields or noise.
 - Direct air flow from an air conditioner.
 - Exposure to direct sunlight.
 - Excessive heat accumulation.

(4) Mount this instrument in the panel considering the following conditions:

- Ensure at least 50 mm space on top and bottom of the instrument for maintenance and environmental reasons.
- Do not mount this instrument directly above equipment that generates large amount of heat (heaters, transformers, semi-conductor functional devices, large-wattage resistors).
- If the ambient temperature rises above 50 °C, cool this instrument with a forced air fan, cooler, etc. Cooled air should not blow directly on this instrument.
- In order to improve safety and the immunity to withstand noise, mount this instrument as far away as possible from high voltage equipment, power lines, and rotating machinery.

High voltage equipment:	Do not mount within the same panel.
Power lines:	Separate at least 200 mm.
Rotating machinery:	Separate as far as possible.

(5) In case this instrument is connected to a supply by means of a permanent connection, a switch or circuit-breaker shall be included in the installation. This shall be in close proximity to the equipment and within easy reach of the operator. It shall be marked as the disconnecting device for the equipment.

3.2 Dimensions

External dimensions

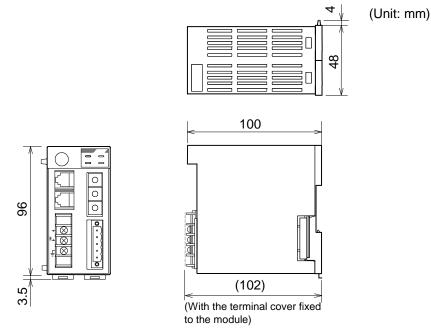


Fig. 3-1 External dimensions

The above figure is open-style connector type. The figure of micro-style connector type is the same as an open-style connector type.

Module mounting depth (for DIN rail mounting)

The mounting depth of module is 108 mm from the mounting surface inside the panel to the front of the module with the module mounted on the DIN rail.

However, when connected with a connection cable the following dimensions need to be added.

- Open-style connector type: Approx. 50 mm
- Micro-style connector type: Approx. 100 mm

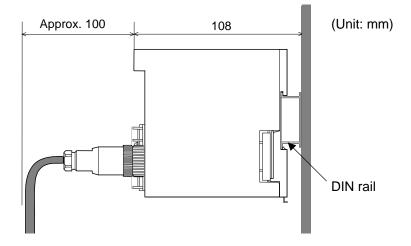


Fig. 3-2 Example of module mounting depth (For micro-style connector)

3.3 Mounting the Mother Block

The mother block can be mounted to a panel or DIN rail.

Panel mounting

I. Refer to both the panel mounting dimensions below and the external dimensions in previous section when selecting the location.

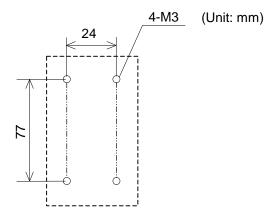


Fig. 3-3 Mounting dimensions

- Remove the module from the mother block. For details of removing the module, refer to 3.5 Removing the Module Mainframe (P. 15).
- **3.** Connect the mother blocks together before tightening the screws on the panel. (Customer must provide the set screws)

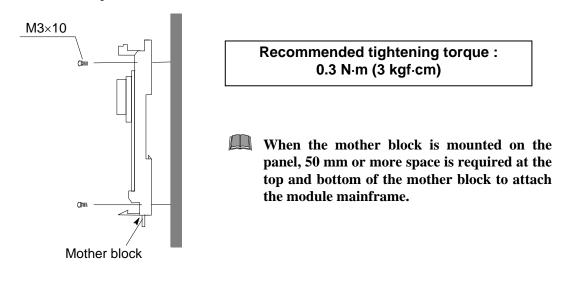


Fig. 3-4 Panel mounting

DIN rail mounting

- *1.* Remove the module mainframe from the mother block. For details of removing the module mainframe, refer to **3.5 Removing the Module Mainframe (P. 15)**.
- 2. Pull down both locking devices at the bottom of the mother block. (A)
- 3. Attach the top bracket of the mother block to the DIN rail and push the lower section into place on the DIN rail. (B)
- 4. Slide the locking devices up to secure the mother block to the DIN rail. (C)

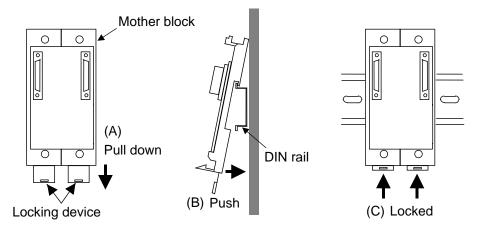


Fig. 3-5 Mounting the mother block

When the mother block is mounted on panel, 50 mm or more space is required at the top and bottom of the mother block to attach the module mainframe.

3.4 Mounting the Module Mainframe

It engages the module with the mother block that is mounted on DIN rail or a panel.

- 1. Place the module mainframe opening on top of the mother block tab. (A)
- 2. Snap the lower part of module mainframe on to the mother block. (B)

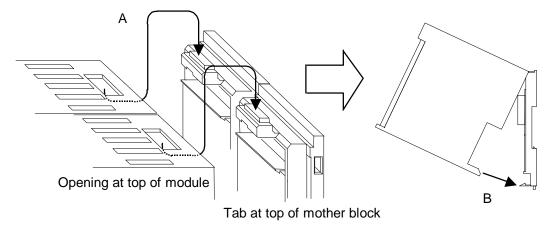


Fig. 3-6 Mounting the module mainframe

A snapping sound will be heard when module mainframe is securely connected to mother block.

3.5 Removing the Module Mainframe

To separate the module mainframe from the mother block, press the bottom on the module, lifting upward, to release connection.

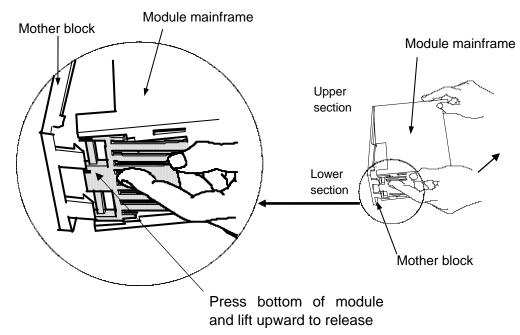
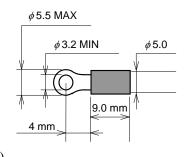


Fig. 3-7 Removing the module mainframe

4.1 Wiring Cautions

To prevent electric shock or instrument failure, do not turn on the power until all wiring is completed. Make sure that the wiring is correct before applying power to the instrument.


- To avoid noise induction, keep communication signal wires away from instrument power line, load lines and power lines of other electric equipment.
- If there is electrical noise in the vicinity of the instrument that could affect operation, use a noise filter.
 - Shorten the distance between the twisted power supply wire pitches to achieve the most effective noise reduction.
 - Always install the noise filter on a grounded panel. Minimize the wiring distance between the noise filter output and the instrument power supply terminals to achieve the most effective noise reduction.
 - Do not connect fuses or switches to the noise filter output wiring as this will reduce the effectiveness of the noise filter.
- Use a shielded wire when wiring input or output in a noisy environment to resist noise influence.
- Power supply wiring must be twisted and have a low voltage drop.
- This instrument with 24 V power supply is not provided with an overcurrent protection device. For safety install an overcurrent protection device (such as fuse) with adequate breaking capacity close to the instrument.
 - Fuse type: Time-lag fuse (Approved fuse according IEC60127-2 and/or UL248-14)
 - Fuse rating: Rated current: 0.5 A
- For an instrument with 24 V power supply input, supply power from "SELV" circuit defined as IEC 60950-1.
- A suitable power supply should be considered in end-use equipment. The power supply must be in compliance with a limited-energy circuits (maximum available current of 8 A).
- COM-H is provided with a functional grounding terminal. A functional grounding terminal means one that is not required for safety purposes but is used for some functional purpose (such as grounding noise filters).
- Use the solderless terminal appropriate to the screw size.

- Screw Size:	$M3 \times 7$
- Recommended	tightening torque:

 $0.4 \text{ N} \cdot \text{m} (4 \text{ kgf} \cdot \text{cm})$

- Applicable wire: Solid/Twisted wire of 0.25 to 1.65 mm²
- Specified solderless terminals:

Manufactured by J.S.T MFG CO., LTD. Circular terminal with isolation V1.25–3 (M3 screw, width 5.5 mm, hole diameter 3.2 mm)

• Make sure that during field wiring parts of conductors cannot come into contact with adjacent conductive parts.

4.2 Terminal Configuration

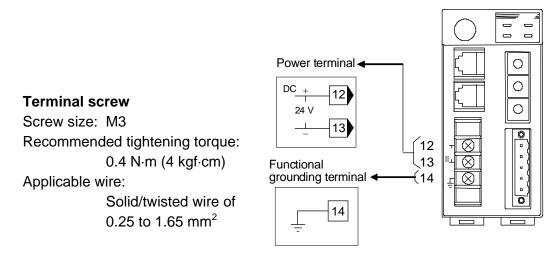


Fig. 4-1 Power supply/ground wiring

The above figure is open-style connector type. The figure of micro-style connector type is the same as an open-style connector type.

• Power supply

Use a power supply is within the power supply voltage variation range. 21.6 to 26.4 V DC (Rating: 24 V DC)

• Functional ground

A functional grounding terminal means one that is not required for safety purposes but is used for some functional purpose (such as grounding noise filters).

4.3 Connections

To prevent electric shock or instrument failure, turn off the power before connecting or disconnecting the instrument and peripheral equipment.

CAUTION

- Connect connectors correctly in the right position. If it is forcibly pushed in with pins in the wrong positions, the pins may be bent resulting in instrument failure.
- When connecting or disconnecting the connectors, do not force it too far to right and left or up and down, but move it on the straight. Otherwise, the connector pins may be bent, causing instrument failure.
- When disconnecting a connector, hold it by the connector itself. Disconnecting connectors by yanking on their cables can cause breakdowns.
- To prevent malfunction, never touch the contact section of a connector with bare hands or with hands soiled with oil or the like.
- To prevent malfunction, connect cable connectors securely, then firmly tighten the connector fastening screws.
- To prevent damage to cables, do not bend cables over with excessive force.

4.3.1 Connection to DeviceNet

- Open-style connector
- Pin layout of COM.PORT3

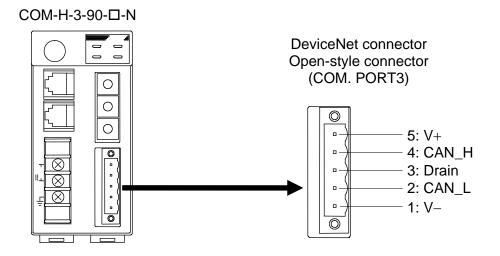


Fig. 4-2 Pin layout of COM.PORT3 (open-style connector)

ullet	Connector	pin	number	and	signal	details
-------	-----------	-----	--------	-----	--------	---------

Pin No.	Signal Name	Symbol	Cable color
1	Power supply minus (–)	V–	Black
2	Communication data low	CAN_L	Blue
3	Shield	Drain	
4	Communication data high	CAN_H	White
5	Power supply plus (+)	V+	Red

• Connection plugs (recommended models)

• Standard type

MSTB2.5/5-STF-5.08AU M: PHOENIX CONTACT, Inc.

• Multi-drop type TMSTBP2.5/5-STF-5.08AU M: PHOENIX CONTACT, Inc.

- Micro-style connector
- Pin layout of COM.PORT3

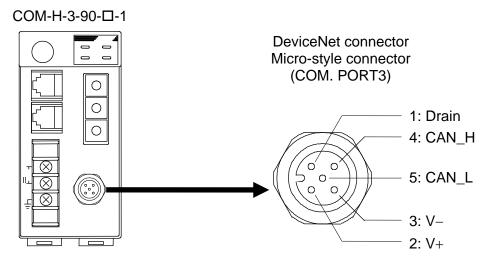


Fig. 4-3 Pin layout of COM.PORT3 (micro-style connector)

• Connector pin number and signal details

Pin No.	Signal Name	Symbol	Cable color
1	Shield	Drain	
2	Power supply plus (+)	V+	Red
3	Power supply minus (–)	V–	Black
4	Communication data high	CAN_H	White
5	Communication data low	CAN_L	Blue

• Connection socket (recommended model)

SACC-M12FS-5CON-PG 9-M: PHOENIX CONTACT, Inc.

This socket is a type to use thin cable.

Cable

Use the communication cable (thick cable or thin cable) that matched specification of DeviceNet.

- By thickness of a cable to use and connection method, usable connection connector type is different.
- For cable specifications, connection method and vendor, refer to the home page of ODVA (Open DeviceNet Vender Association). URL: http://www.odva.org

Connection outline of DeviceNet

The following diagram shows the configuration of a DeviceNet network.

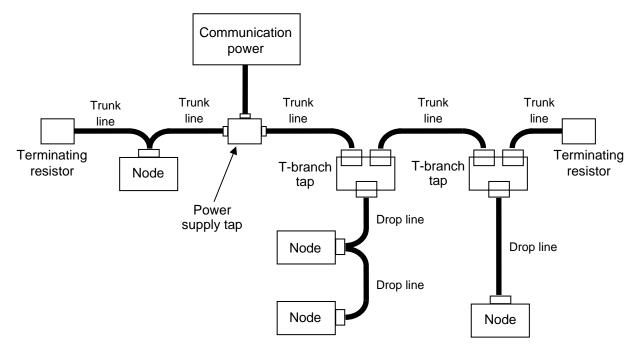


Fig. 4-4 Network configuration example

• Nodes

There are two kinds of nodes of master and slave in DeviceNet. The master and slaves can be connected at any location in the network.

• Trunk/Drop lines

The trunk line refers to the cable that has Terminating Resistors on both ends. Cables branching from the trunk line are known as drop lines.

Use the DeviceNet communication cable (thick or thin cable) for Trunk/Drop lines.

• Connection methods

Two methods can be used to connect DeviceNet nodes: The T-branch method and the multi-drop method. With the T-branch method, the node is connected to a drop line created with a T-branch Tap. With the multi-drop method, the node is directly connected to the trunk line or the drop line.

• Terminating resistors

In DeviceNet a terminating resistor must be connected to each end of the trunk line Specification of terminating resistor: 121Ω , $\pm 1 \%$, 1/4 W (Metal film resistance)

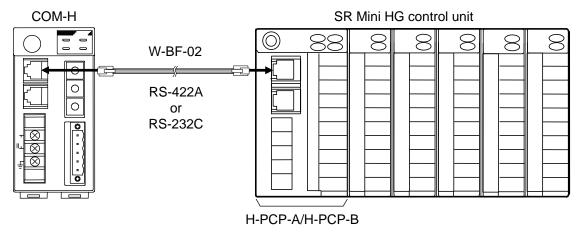
• Communications power supplies

To use DeviceNet, connect a communications power supply (24 V DC) to the communications connector of each node with a cable.

For network laying requirement of DeviceNet/method, refer to Instruction Manual of master product or DeviceNet specifications. DeviceNet specifications are available from ODVA (Open DeviceNet Vender Association). URL: http://www.odva.org

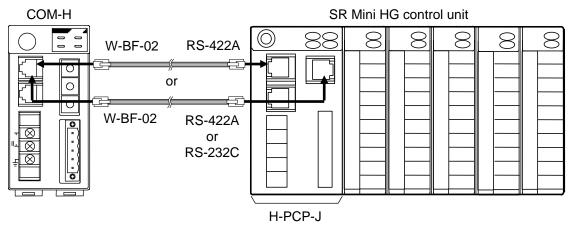
4.3.2 Connection to RKC controllers

Figures of the open-style connector type are used for the following description. However, those of the micro-style connector type can be similarly used.


(1) Connection to SR Mini HG

Communication interface can select either of RS-422A or RS-232C. (Specify when ordering) It is necessary for communication interface of SR Mini HG to correspond with COM-H. One SR Mini HG control unit can connect for one COM-H.

W-BF-02* communication cable (RKC product) can be used as communication cable (sold separately). If noise is a factor, customer should use a twisted pair cable (not included) or something to that effect.


* Shields of the cable are connected to SG (No. 6 pin) of the COM-H connector.

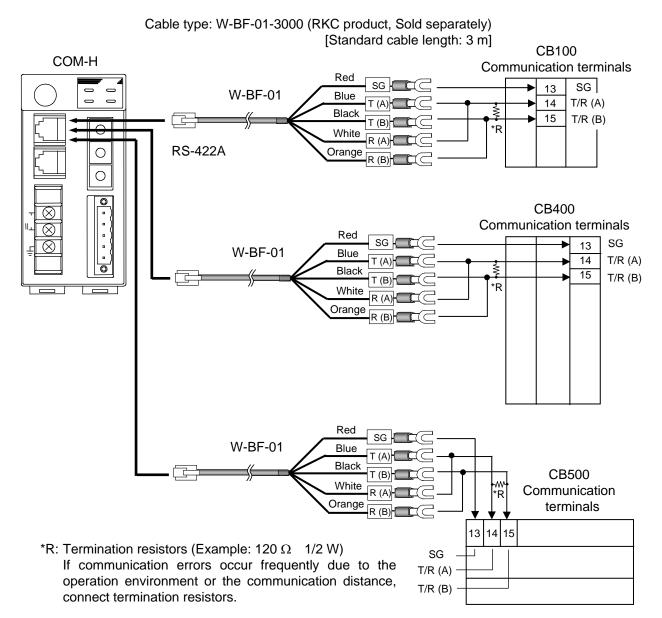
• When used H-PCP-A or H-PCP-B module

Cable type: W-BF-02-3000 (RKC product, Sold separately) [Standard cable length: 3 m]

• When used H-PCP-J module

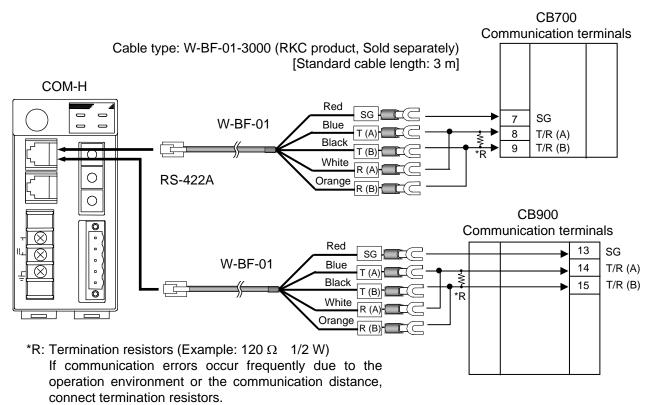
Cable type: W-BF-02-3000 (RKC product, Sold separately) [Standard cable length: 3 m]

(2) Connection to CB100/400/500/700/900

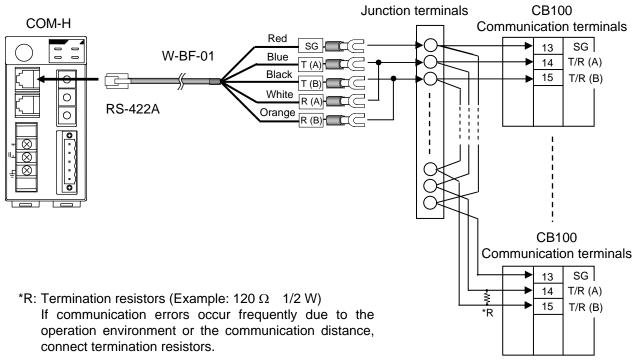

Up to 24 CB100/400/500/700/900 can be connected to one COM-H.

W-BF-01* communication cable (RKC product) can be used as communication cable (sold separately). If noise is a factor, customer should use a twisted pair cable (not included) or something to that effect.

* Shields of the cable are connected to SG (No. 6 pin) of the COM-H connector.


• Connection method of the W-BF-01 cable.

When connected to the RS-485 interface controller by using the RS-422A interface for COM-H control communication, connect T (A) [blue] and R (A) [white] of the cable to the controller T/R (A) terminals and also T (B) [black] and R (B) [orange] of the cable to the controller T/R (B) terminals, respectively.

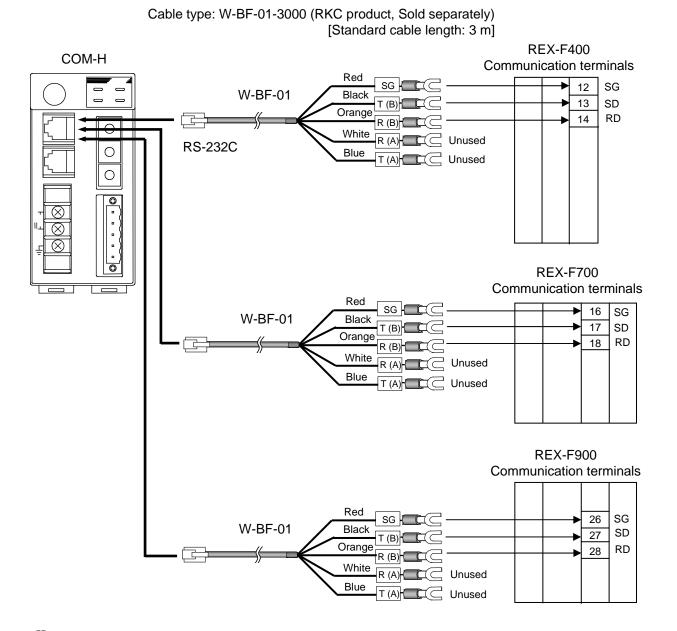


Continued on the next page.

Continued from the previous page.

• Multi-drop connecting example

Up to 24 controllers


(3) Connection to REX-F400/700/900

■ RS-232C

One REX-F400/700/900 can be connected to one COM-H.

W-BF-01* communication cable (RKC product) can be used as communication cable (sold separately). If noise is a factor, customer should use a twisted pair cable (not included) or something to that effect.

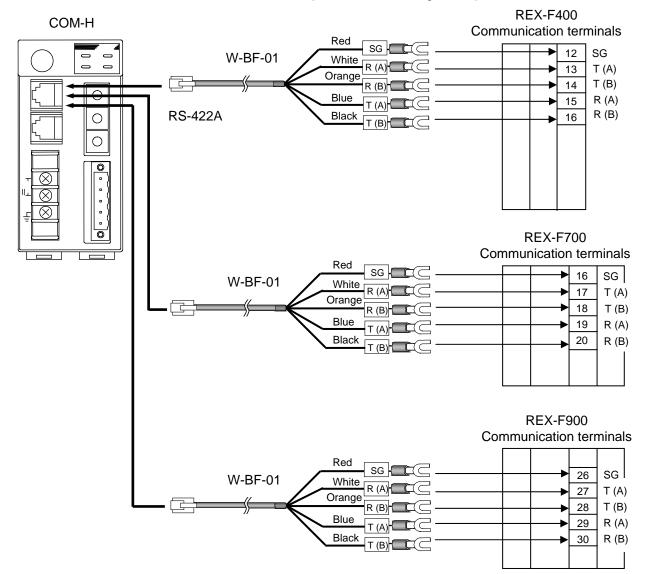
* Shields of the cable are connected to SG (No. 6 pin) of the COM-H connector.

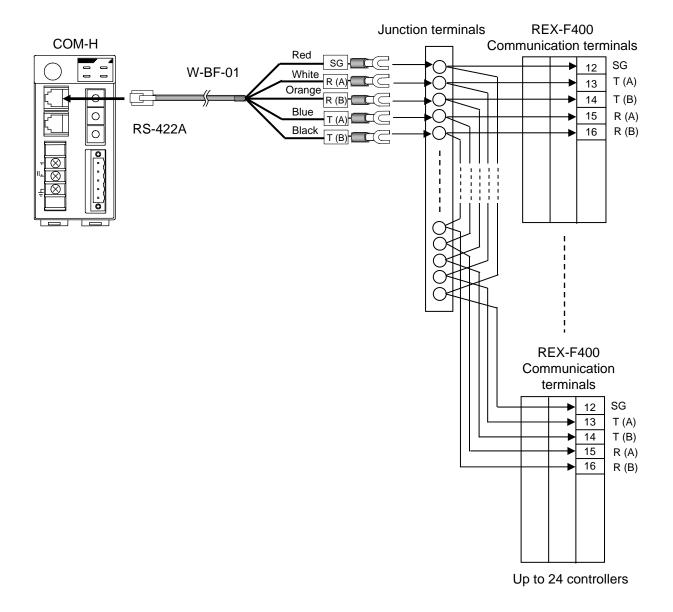
Be sure to insulate the wires that are not used by covering them with insulating tape.

 \square

IMR01L01-E6

RS-422A


Up to 24 REX-F400/700/900 can be connected to one COM-H.



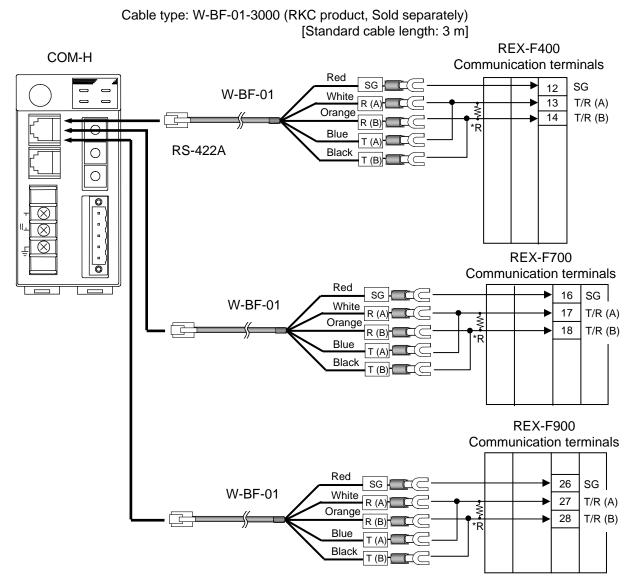
W-BF-01* communication cable (RKC product) can be used as communication cable (sold separately). If noise is a factor, customer should use a twisted pair cable (not included) or something to that effect.

* Shields of the cable are connected to SG (No. 6 pin) of the COM-H connector.

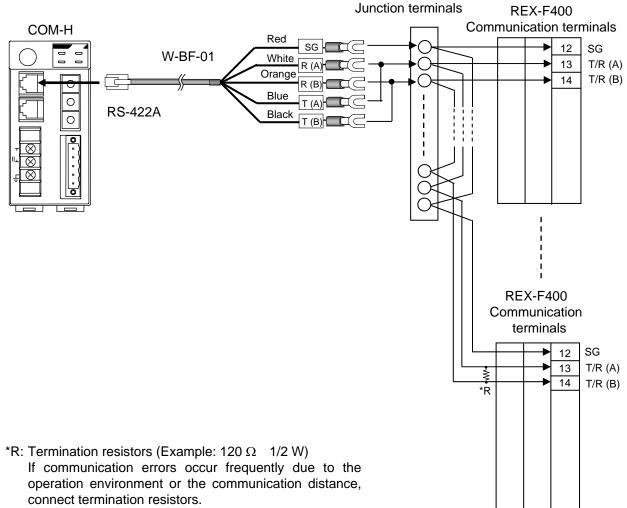
Cable type: W-BF-01-3000 (RKC product, Sold separately) [Standard cable length: 3 m]

• Multi-drop connecting example

■ RS-485


Up to 24 REX-F400/700/900 can be connected to one COM-H.

W-BF-01* communication cable (RKC product) can be used as communication cable (sold separately). If noise is a factor, customer should use a twisted pair cable (not included) or something to that effect.


* Shields of the cable are connected to SG (No. 6 pin) of the COM-H connector.

• Connection method of the W-BF-01 cable

When connected to the RS-485 interface controller by using the RS-422A interface for COM-H control communication, connect T (A) [blue] and R (A) [white] of the cable to the controller T/R (A) terminals and also T (B) [black] and R (B) [orange] of the cable to the controller T/R (B) terminals, respectively.

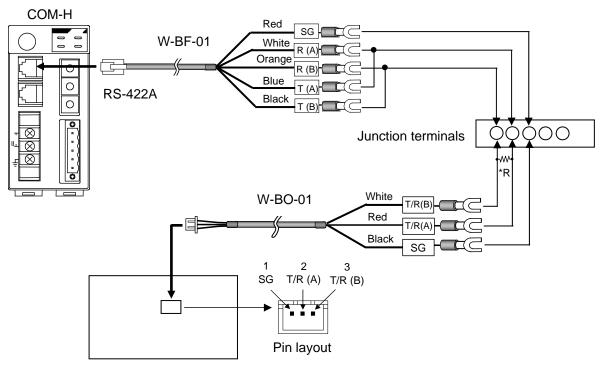
^{*}R: Termination resistors (Example: $120 \Omega - 1/2 W$) If communication errors occur frequently due to the operation environment or the communication distance, connect termination resistors.

• Multi-drop connecting example

Up to 24 controllers

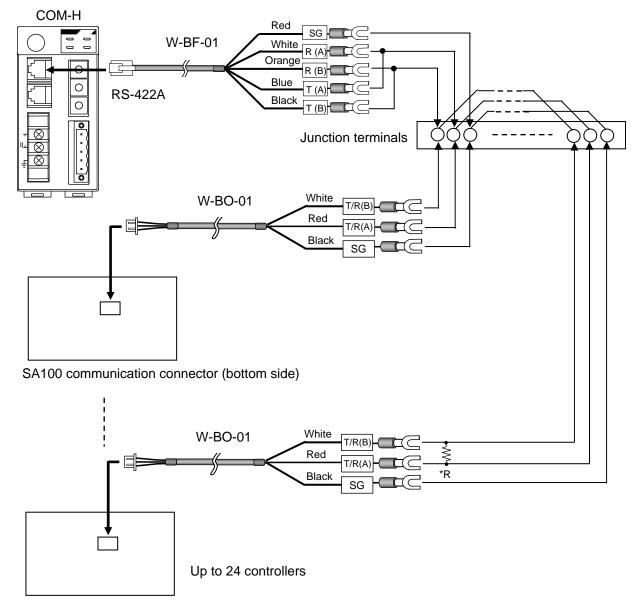
(4) Connection to SA100

Up to 24 SA100 can be connected to one COM-H.


W-BF-01* and W-BO-01 communication cables (RKC product) can be used as communication cable (sold separately). If noise is a factor, customer should use a twisted pair cable (not included) or something to that effect.

* Shields of the cable are connected to SG (No. 6 pin) of the COM-H connector.

• Connection method of the W-BF-01/W-BO-01 cable


When connected to the RS-485 interface controller by using the RS-422A interface for COM-H control communication, connect T (A) [blue] and R (A) [white] of the cable to the controller T/R (A) connector pin and also T (B) [black] and R (B) [orange] of the cable to the controller T/R (B) connector pin, respectively.

Cable type: W-BF-01-3000/W-BO-01-3000 (RKC product, Sold separately) [Standard cable length: 3 m]

SA100 communication connector (bottom side)

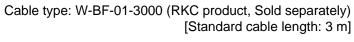
*R: Termination resistors (Example: $120 \Omega \quad 1/2 W$) If communication errors occur frequently due to the operation environment or the communication distance, connect termination resistors.

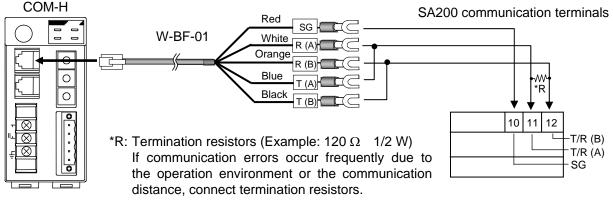
• Multi-drop connecting example

SA100 communication connector (bottom side)

*R: Termination resistors (Example: $120 \Omega 1/2 W$) If communication errors occur frequently due to the operation environment or the communication distance, connect termination resistors.

(5) Connection to SA200


Up to 24 SA200 can be connected to one COM-H.


W-BF-01* communication cable (RKC product) can be used as communication cable (sold separately). If noise is a factor, customer should use a twisted pair cable (not included) or something to that effect.

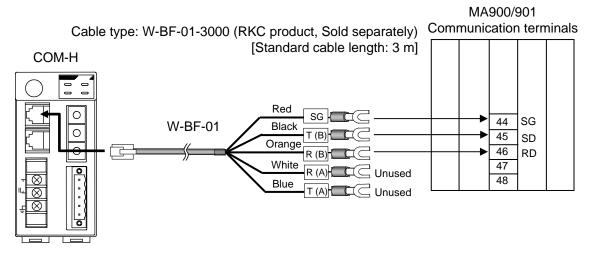
* Shields of the cable are connected to SG (No. 6 pin) of the COM-H connector.

• Connection method of the W-BF-01 cable

When connected to the RS-485 interface controller by using the RS-422A interface for COM-H control communication, connect T (A) [blue] and R (A) [white] of the cable to the controller T/R (A) terminals and also T (B) [black] and R (B) [orange] of the cable to the controller T/R (B) terminals, respectively.

Multi-drop connecting example Junction SA200 communication terminals COM-H terminals Red SG W-BF-01 White Orange Blue 0 10 11 12 Black 0 -T/R (B) T/R (A) SG 10 11 12 *R: Termination resistors (Example: 120Ω 1/2 W) T/R (B) If communication errors occur frequently due to T/R (A) the operation environment or the communication SG distance, connect termination resistors.

Up to 24 controllers

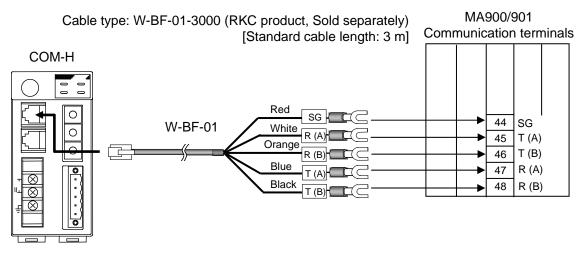

(6) Connrction to MA900/901

■ RS-232C

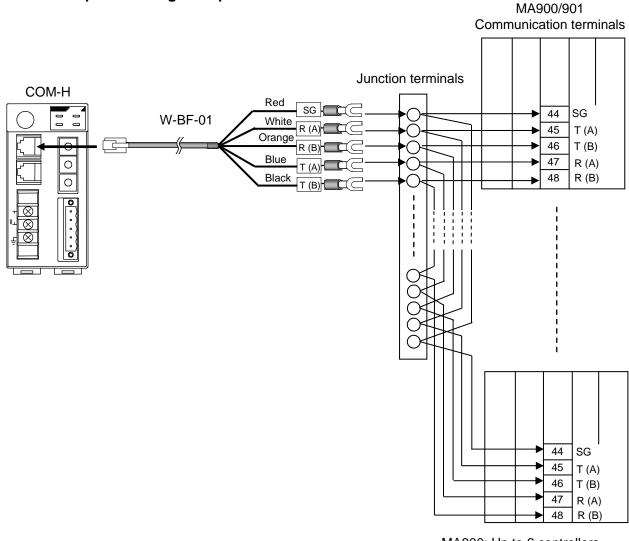
One MA900/901 can be connected to one COM-H.

W-BF-01* communication cable (RKC product) can be used as communication cable (sold separately). If noise is a factor, customer should use a twisted pair cable (not included) or something to that effect.

* Shields of the cable are connected to SG (No. 6 pin) of the COM-H connector.


Be sure to insulate the wires that are not used by covering them with insulating tape.

■ RS-422A


Up to six MA900 or up to three MA901 can be connected to one COM-H.

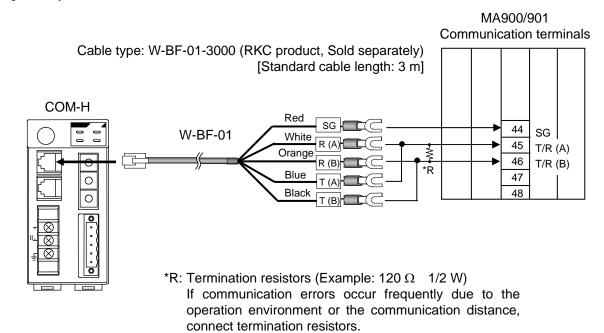
W-BF-01* communication cable (RKC product) can be used as communication cable (sold separately). If noise is a factor, customer should use a twisted pair cable (not included) or something to that effect.

* Shields of the cable are connected to SG (No. 6 pin) of the COM-H connector.

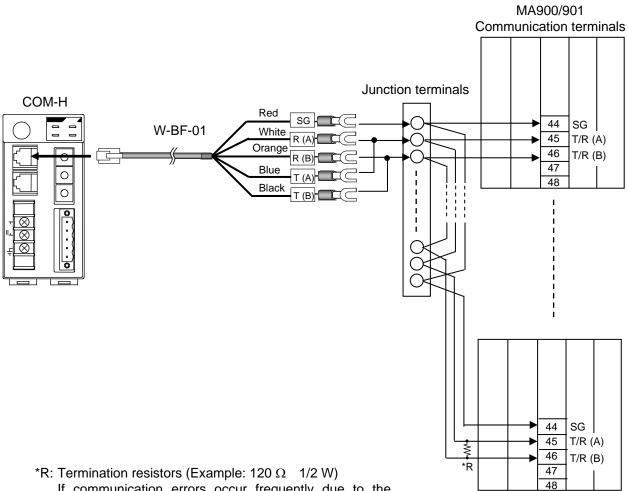
• Multi-drop connecting example

MA900: Up to 6 controllers MA901: Up to 3 controllers

■ RS-485


Up to six MA900 or up to three MA901 can be connected to one COM-H.

W-BF-01* communication cable (RKC product) can be used as communication cable (sold separately). If noise is a factor, customer should use a twisted pair cable (not included) or something to that effect.


* Shields of the cable are connected to SG (No. 6 pin) of the COM-H connector.

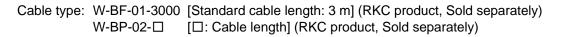
• Connection method of the W-BF-01 cable

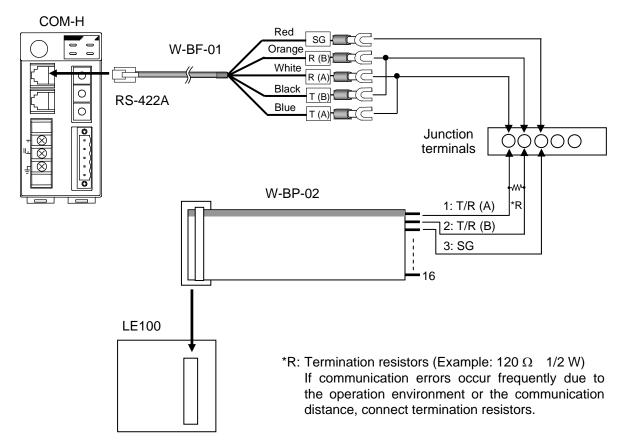
When connected to the RS-485 interface controller by using the RS-422A interface for COM-H control communication, connect T (A) [blue] and R (A) [white] of the cable to the controller T/R (A) terminals and also T (B) [black] and R (B) [orange] of the cable to the controller T/R (B) terminals, respectively.

R: Termination resistors (Example: $120 \Omega = 1/2 W$) If communication errors occur frequently due to the operation environment or the communication distance, connect termination resistors.

MA900: Up to 6 controllers MA901: Up to 3 controllers

(7) Connection to LE100


Up to 24 LE100 can be connected to one COM-H.


W-BF-01* and W-BP-02 communication cables (RKC product) can be used as communication cable (sold separately). If noise is a factor, customer should use a twisted pair cable (not included) or something to that effect.

* Shields of the cable are connected to SG (No. 6 pin) of the COM-H connector.

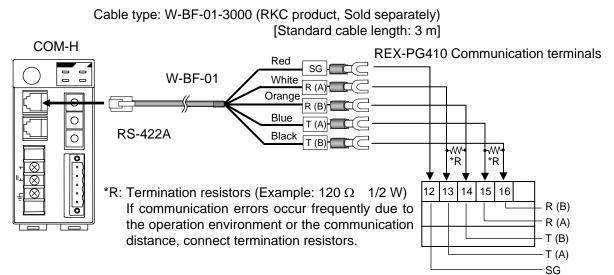
• Connection method of the W-BF-01 cable

When connected to the RS-485 interface controller by using the RS-422A interface for COM-H control communication, connect T (A) [blue] and R (A) [white] of the cable to the controller T/R (A) connector pin and also T (B) [black] and R (B) [orange] of the cable to the controller T/R (B) connector pin, respectively.

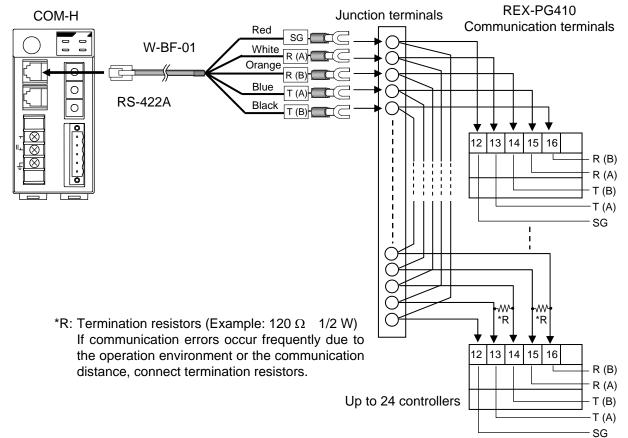
COM-H Red SG 0 0 W-BF-01 Orange R (B White ç ≪ Black 0 RS-422A Blue 0 ŐŐĆ 7 Junction terminals W-BP-02 1: T/R (A) 2: T/R (B) 3: SG 16 LE100 W-BP-02 1: T/R (A) ∛ *R 2: T/R (B) 3: SG 16 LE100 *R: Termination resistors (Example: 120Ω 1/2 W) If communication errors occur frequently due to the operation environment or the communication distance, connect termination resistors.

• Multi-drop connecting example

Up to 24 controllers


(8) Connection to REX-PG410

■ RS-422A

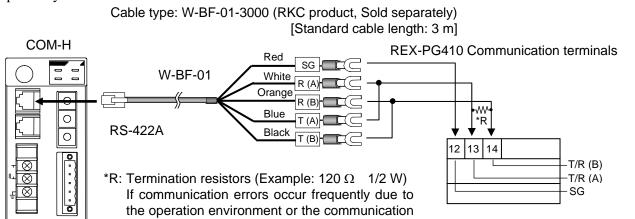

Up to 24 REX-PG410 can be connected to one COM-H.

W-BF-01* communication cable (RKC product) can be used as communication cable (sold separately). If noise is a factor, customer should use a twisted pair cable (not included) or something to that effect.

* Shields of the cable are connected to SG (No. 6 pin) of the COM-H connector.

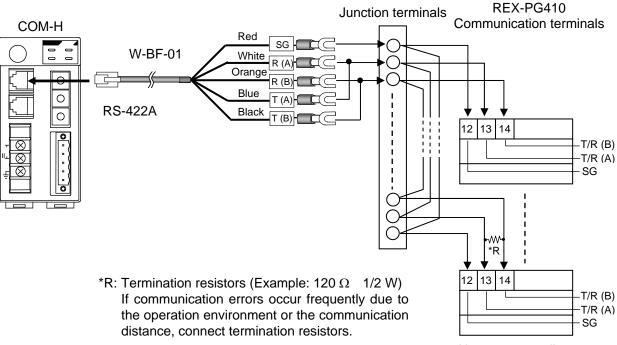
• Multi-drop connecting example

■ RS-485


Up to 24 REX-PG410 can be connected to one COM-H.

W-BF-01* communication cable (RKC product) can be used as communication cable (sold separately). If noise is a factor, customer should use a twisted pair cable (not included) or something to that effect.

* Shields of the cable are connected to SG (No. 6 pin) of the COM-H connector.


• Connection method of the W-BF-01 cable

When connected to the RS-485 interface controller by using the RS-422A interface for COM-H control communication, connect T (A) [blue] and R (A) [white] of the cable to the controller T/R (A) terminals and also T (B) [black] and R (B) [orange] of the cable to the controller T/R (B) terminals, respectively.

distance, connect termination resistors.

Multi-drop connecting example

Up to 24 controllers

5. SETTING

- To prevent electric shock or instrument failure, always turn off the power before setting the switch.
- To prevent electric shock or instrument failure, never touch any section other than those instructed in this manual.

5.1 DeviceNet Setting

5.1.1 Node address setting

To identify each device connected to the network, it is necessary to set a different address to each device (node).

For the DeviceNet, as it is possible to connect up to 64 devices including a master to the network, node address (MAC ID) from 0 to 63 can be set.

For this setting, use a small blade screwdriver.

Set the address such that it is different to the other addresses on the same line. Otherwise, problems or malfunction may result.

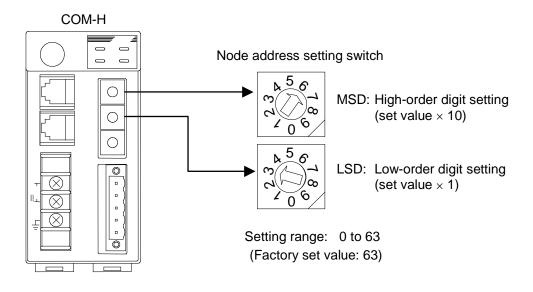


Fig. 5-1 Node address setting switch

The above figure is open-style connector type. The figure of micro-style connector type is the same as an open-style connector type.

5.1.2 DeviceNet communication speed setting

Set the communication speed of DeviceNet. For this setting, use a small slotted screwdriver.

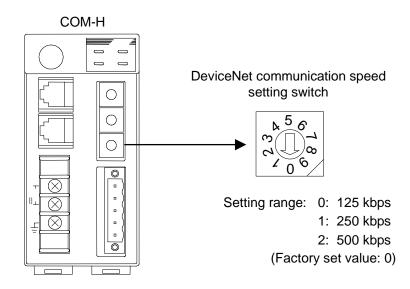


Fig. 5-2 DeviceNet communication speed setting switch

Do not set 3 to 9. Otherwise, malfunction may result.

The above figure is open-style connector type. The figure of micro-style connector type is the same as an open-style connector type.

5.2 Connection Controller and Communication Mode Setting

Connection controller type and Polling I/O communication mode can be set with the DIP switch located in the COM-H.

I. To separate the module mainframe from the mother block, press the bottom on the module, lifting upward, to release connection.

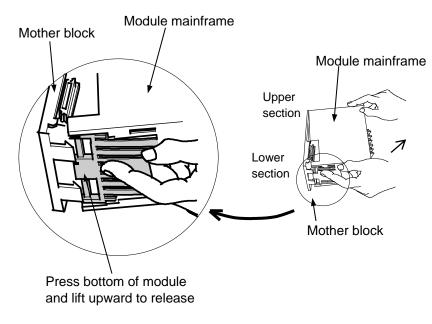


Fig. 5-3 Removing the Module

2. Remove the MCU board from the case while holding the connector by hand with the stopper pulled in the direction shown by the arrow.

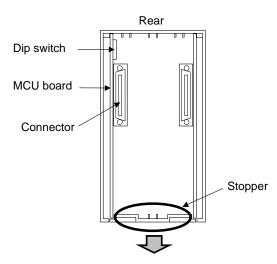


Fig. 5-4 View with the mother block removed

3. Connection controller and communication mode can be set with the DIP switch located in the COM-H.

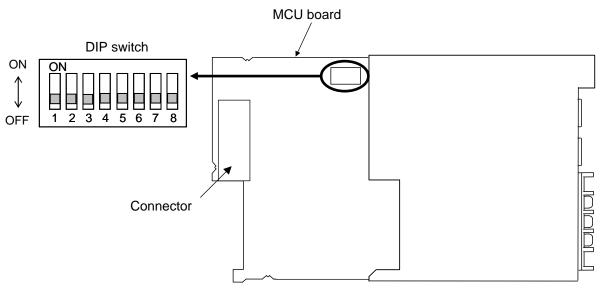


Fig 5-5 Location of DIP switch

• Connection controller setting

Switch number 1	Connection controller model
OFF	SR Mini HG
ON	CB100/400/500/700/900 REX-F400/700/900 SA100/200 MA900/901 LE100 REX-PG410

Factory set value: OFF (SR Mini HG)

• Communication mode setting

Setting of communicate mode is necessary when it uses Polling I/O communication.

Switch number	Communication mode	
2		
OFF	Communication mode A (Compatible mode)	
ON	Communication mode B (Expansion mode)	

Factory set value: OFF (Communication mode A)

For the communication mode A (compatible mode) and communication mode B (expansion mode), refer to **6.2.2 Polling I/O communication (P. 60).**

• Transmission wait time setting

When connecting the REX-PG410 to the COM-H, set the Transmission wait time to "ON (3 ms)."

Switch number 3	Transmission wait time
OFF	1 ms
ON	3 ms

Factory set value: OFF (1 ms)

Switch No. 4 to 8: OFF fixed (Do not change this one)

5.3 Controller Communication Setting

■ COM-H communication setting

Set a controller communication setting switch of COM-H to become the same value as communication speed and bit configuration of controller connecting with COM-H. For this setting, use a small slotted screwdriver.

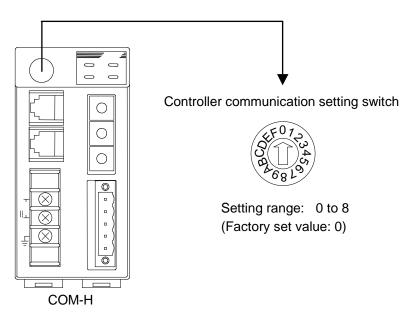
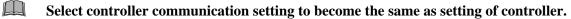



Fig. 5-6 Controller communication setting switch

Setting	SR Mini HG communication speed	Data bit configuration
0	9600 bps	Data 8-bit, without parity, Stop 1-bit
1	9600 bps	Data 7-bit, Odd parity, Stop 1-bit
2	9600 bps	Data 7-bit, Even parity, Stop 1-bit
3	4800 bps	Data 8-bit, without parity, Stop 1-bit
4	4800 bps	Data 7-bit, Odd parity, Stop 1-bit
5	4800 bps	Data 7-bit, Even parity, Stop 1-bit
6	19200 bps	Data 8-bit, without parity, Stop 1-bit
7	19200 bps	Data 7-bit, Odd parity, Stop 1-bit
8	19200 bps	Data 7-bit, Even parity, Stop 1-bit

Do not set 9 to F. Otherwise, malfunction may result.

The above figure is open-style connector type. The figure of micro-style connector type is the same as an open-style connector type.

Communication setting of the controller side

• Communication speed and data bit configuration setting

Set the same communication speed and data bit configuration for both the controller and the COM-H.

• Address setting

- An address of SR Mini HG sets it with H-PCP module. Address setting value always set "0." In address setting except 0, DeviceNet communication is impossible.
- Address setting range of REX-F400/700/900, CB100/400/500/700/900, SA100/200, MA900/901, LE100 and REX-PG410 is from 1 to 24. When setting the address, always set from "1."

For communication setting on each controller, refer to Instruction Manual of the following.

• SR Mini HG SYSTEM:

SR Mini HG SYSTEM Communication Quick Manual (IMS01V02-ED) SR Mini HG SYSTEM Communication Instruction Manual (IMSRM09-ED) Power supply/CPU module H-PCP-J Instruction Manual (IMS01J02-ED)

• REX-F400/700/900:

REX-F400/F700/F900 Communication Instruction Manual (IM900F10-ED)

- CB100/400/500/700/900: CB100/CB400/CB500/CB700/CB900 Communication Instruction Manual (IMCB03-E□)
- SA100:

SA100 Communication Instruction Manual (IMR01J02-ED)

• SA200:

SA200 Communication Instruction Manual (IMR01D02-ED)

• MA900/901:

MA900/MA901 Communication Instruction Manual (IMR01H02-ED)

- LE100:
 LE100 Communication Instruction Manual (IMR01C02-E□)
- REX-PG410: REX-PG410 Communication Instruction Manual (IM41PG02-ED)

6. DeviceNet COMMUNICATIONS

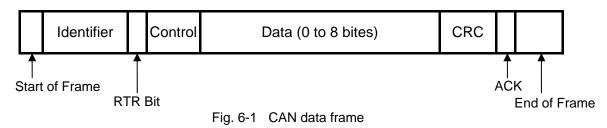
6.1 Features and Functionality

- A DeviceNet network can have Media Access Control Identifiers (MAC ID: Node address) of maximum 64.
- Network length changes with communication speed.

Communication	Maximum net	work length *	Maximum	Cumulative
speed	Thick trunk length	Thin trunk length	drop length	drop length
125 kbps	500 m or less			156 m or less
250 kbps	250 m or less	100 m or less	6 m or less	78 m or less
500 kbps	100 m or less			39 m or less

* Maximum distance between nodes

- Install terminating resistor to both ends of a trunk line in DeviceNet. Specification of terminating resistor: $121 \Omega, \pm 1 \%, 1/4$ W (Metal film resistance)
- A DeviceNet node is modeled as a collection of objects.

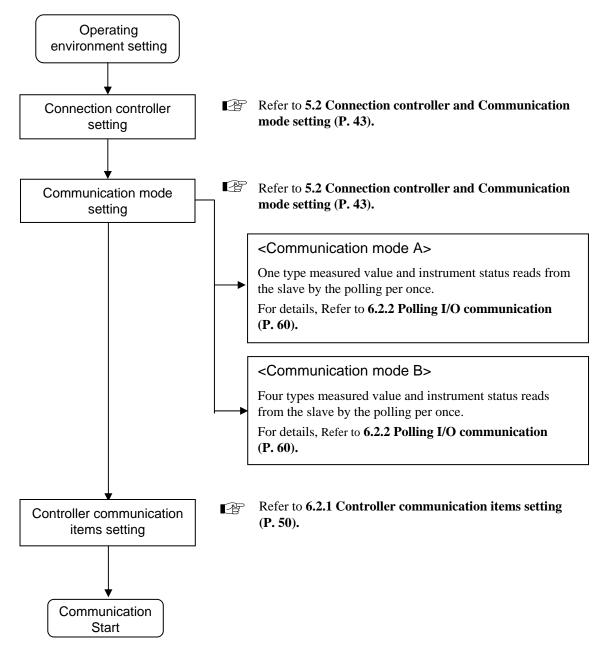

The object model provides a template for organizing and implementing the Attributes (data), Services and Behaviors of the components of a DeviceNet product.

This model has represented the construction of address designation to consist of four levels of Node address (MAC ID), Object class ID, Instance ID and Attribute ID.

An address of this 4 level is used as an identification factor of data in Explicit message communication.

Address	Lowest	Highest
Node	0	63
Object class	1	65535
Instance	0	65535
Attribute	1	255

• DeviceNet incorporates CAN (Controller Area Network). CAN defines the syntax or form of the data movement. Data on the DeviceNet use CAN data frame, and be transmitted.


For details on the communication specification of DeviceNet, refer to DeviceNet specifications. DeviceNet specifications are available from ODVA (Open DeviceNet Vender Association).

URL: http://www.odva.org

6.2 Communication Method

COM-H has supported "Polling I/O communication" and "Explicit message communication" as a communication method of DeviceNet.

Communication procedure

6.2.1 Controller communication items setting

Thirty controller communication items can be set to the COM-H. This setting can be made by using the configuration tool.

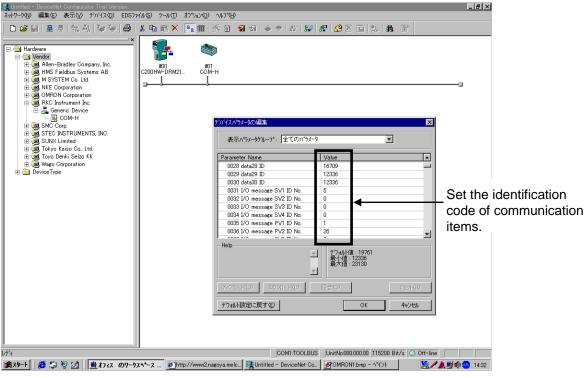
Time-out may occur if trying to read any COM-H parameter from the configuration tool while in Polling I/O communication between the master station and COM-H. When reading or setting the parameters by the configuration tool, stop I/O polling at the master station.

The communication items are stored in the inside of COM-H, and are held in case of power off.

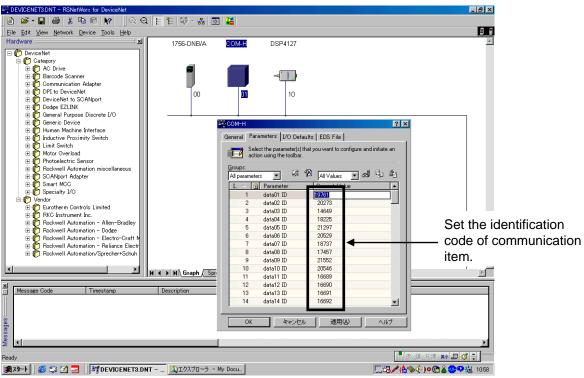
For communication items in shipment, refer to ● Communication items of shipment (P. 58).

• Setting procedure

- 1. Connect PC (Personal computer) to COM-H with DeviceNet.
- 2. Install the EDS file of COM-H on the configuration tool.


Communication mode A and B are available for EDS files. Therefore, install the EDS file in the mode used.

- EDS file for communicate mode A (Compatible mode)
- EDS file for communicate mode B (Expansion mode)


For communication mode, refer to 6.2.2 Polling I/O communication (P. 60).

3. Set the DeviceNet to the on-line state by using the configuration tool to open the COM-H property screen.

<Reference screen 1: Configuration tool made by OMRON>

Continued on the next page.

<Reference screen 2: Configuration tool made by Rockwell>

4. With property screen, sets identification code of controller communication items in the parameter from 1 to 47.

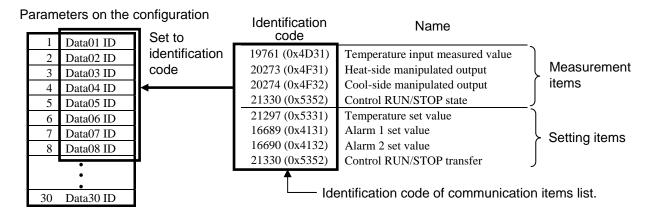
For identification code, refer to 6.3. Communication Items List (P. 68).

• Parameter setting example of Polling I/O communication

Parameter setting example at used the SR Mini HG.

- Measurement items: Temperature measured input value, Heat-side manipulated output,

Cool-side manipulated output, Control RUN/STOP state


- Setting items: Temperature set value, Alarm 1 set value, Alarm 2 set value, Control RUN/STOP transfer

- Controller status: Alarm 1 status, Alarm 2 status, Heater break alarm status, Burnout status
- Number of maximum connection channels:

10 channels

Conduct parameter set according to the procedure described below.

1. Selects identification code of polling data from the communication items list, and sets it in the parameter from 1 to 8.

2. The parameter numbers of measured items set to parameters 1 to 4 are set to parameters 35 to 38.

r		Parameter	Identification code]
	1	Data01 ID	19761 (0x4D31)	
	2	Data02 ID	20273 (0x4F31)	
Parameter numbers of	3	Data03 ID	20274 (0x4F32)	
measured items.	4	Data04 ID	21330 (0x5352)	
-	5	Data05 ID	21297 (0x5331)	
	6	Data06 ID	16689 (0x4131)	
	7	Data 🗙 ID	16690 (0x4132)	
	8	Data08 ND	21330 (0x5352)	
		• •	•	
			•	
	30	Data30 ID		
	31	SV1 ID No.		
		•		
		•		
	34	SV4 ID No.	×	
	35	PV1 ID No.	1	1
	36	PV2 ID No.	2	Set to the parameter numbers
	37	PV3 ID No.	3	of measured items.
	38	PV4 ID No.	4	If set to 0: Unused.
	39	Status bit 0		
		•	•	
		•	•	
	46	Status bit 7	-	
	47	Max temperature ch		1
		*	1	4

3. The parameter numbers of setting items set to parameters 5 to 8 are set to parameters 31 to 34. Parameter Identification code Data01 ID 19761 (0x4D31) 1 2 Data02 ID 20273 (0x4F31) 3 Data03 ID 20274 (0x4F32) Data04 ID 4 21330 (0x5352) 5 Data05 ID 21297 (0x5331) Parameter numbers 6 Data06 ID 16689 (0x4131) of setting items. 7 Data07 ID 16690 (0x4132) 8 Data08 ID 21330 (0x5352) ٠ -٠ 30 Data30 ID * 31 SV1 ID No. 5 Set to the parameter 32 SV2 ID No. 6 numbers of setting items. 33 SV3 ID No. 7 34 SV4 ID No. 8 If set to 0: Unused. 35 PV1 ID No. 1 36 PV2 ID No. 2 37 PV3 ID No. 3 38 PV4 ID No. 4 39 Status bit 0 • . . ٠ 46 Status bit 7 47 Max temperature ch

4. Set the identification code of controller status in the parameter from 39 to 46.

	Parameter	Identification code		
1	Data01 ID	19761 (0x4D31)		
	•	•		
	•	•		
8	Data08 ID	21330 (0x5352)		
	•	•		
	•	•		
•	•	•		
30	Data30 ID			
31	SV1 ID No.	5		
32	SV2 ID No.	6		
33	SV3 ID No.	7		
34	SV4 ID No.	8		
35	PV1 ID No.	1		S
36	PV2 ID No.	2	۲ ا	- 0
37	PV3 ID No.	3		
38	PV4 ID No.	4		S
39	Status bit 0	16705 (0x4141)		a
40	Status bit 1	16706 (0x4142)	Ш	
41	Status bit 2	16707 (0x4143)		
42	Status bit 3	16945 (0x4231)		
43	Status bit 4	12336 (0x3030)		A
44	Status bit 5	12336 (0x3030)	}	۲
45	Status bit 6	12336 (0x3030)		6
46	Status bit 7	12336 (0x3030)		
47	Max temperature ch			

Set to the identification code of alarm 1 status, alarm 2 status, heater break status and burnout status.

As Nos. 43 to 46 are not used, "12336 (0x3030)" (no communication item designated) is set.

Parameter	Identification code	
1 Data01 ID	19761 (0x4D31)	
٠	•	
•	•	
8 Data08 ID	21330 (0x5352)	
•	•	
•	•	
• 30 Data30 ID	•	
31 SV1 ID No.	5	
32 SV2 ID No.	6	
33 SV3 ID No.	7	
34 SV4 ID No.	8	
35 PV1 ID No.	1	
36 PV2 ID No.	2	
37 PV3 ID No.	3	
38 PV4 ID No.	4	
39 Status bit 0	16705 (0x4141)	
40 Status bit 1	16706 (0x4142)	
41 Status bit 2	16707 (0x4143)	
42 Status bit 3	16945 (0x4231)	
43 Status bit 4	12336 (0x3030)	
44 Status bit 5	12336 (0x3030)	
45 Status bit 6	12336 (0x3030)	Set to the number
46 Status bit 7	12336 (0x3030)	maximum connecti
47 Max temperature ch	10	channels.

5. Set the number of maximum connection channels in the parameter 47.

6. Turn off the power of COM-H once and turn it on again to validate the setting data.

Number of connection channels.

- For SR Mini HG, set the number of maximum channel in temperature control module (H-TIO), current transformer input module (H-CT), DI module (H-DI), DO module (H-DO), analog input module (H-AI) and analog output module (H-AO).
- The REX-F400/700/900, CB100/400/500/700/900, SA100/200, LE100 and REX-PG410, one each is set as one channel.
- One MA900 is set as 4 channels, while one MA901, as 8 channels.

• Relationship between the parameter numbers of configuration tool and controller communication item setting object (0xC7: C7Hex).

For specification of controller communication item setting object (0xC7: C7Hex), refer to **APPENDIX A. Device Profiles (P. 108)**.

Parameter number on	setting object (0xC7: C7Hex).
configuration tool.	1 Data01 ID
	2 Data02 ID
1 Data01 ID	3 Data03 ID
2 Data02 ID	4 Data04 ID
3 Data03 ID	5 Data05 ID
4 Data04 ID	6 Data06 ID
5 Data05 ID	7 Data07 ID
6 Data06 ID	8 Data08 ID
7 Data07 ID	9 Data09 ID
8 Data08 ID	10 Data10 ID
9 Data09 ID	11 Data11 ID
10 Data10 ID	12 Data12 ID
11 Data11 ID	13 Data13 ID
12 Data12 ID	14 Data14 ID
13 Data13 ID	15 Data15 ID
14 Data14 ID	16 Data 16 ID
15 Data15 ID	17 Data17 ID / value item for the polling.
16 Data16 ID	18 Data18 ID
17 Data17 ID	19 Data19 ID
18 Data18 ID	20 Data20 ID
19 Data19 ID	20 Data20 ID 21 Data21 ID
20 Data20 ID	22 Data22 ID
21 Data21 ID	23 Data23 ID
22 Data22 ID	24 Data24 ID
23 Data23 ID	25 Data25 ID
24 Data24 ID	26 Data26 ID
25 Data25 ID	27 Data27 ID
26 Data26 ID	28 Data28 ID
27 Data27 ID	29 Data 29 ID
28 Data28 ID	30 Data30 ID / Select the desired setting item from
29 Data29 ID	among parameters from 1 to 30 to set that
30 Data30 ID	51 SV1 ID No. parameter number.
31 SV1 ID No.	52 SV2 ID No. The set value corresponding to the setting
32 SV2 ID No.	53 SV3 ID No. item indicated by this parameter number is
33 SV3 ID No.	54 SV4 ID No written to the controller when requested.
34 SV4 ID No.	
35 PV1 ID No.	62 DV2 ID No
36 PV2 ID No.	63 – BV2 ID No
37 PV3 ID No.	64 PV4 ID No parameter number. The measured value
38 PV4 ID No.	
39 Status bit 0	70 Status bit 0 indicated by this parameter number is
40 Status bit 1	71 Status bit 1 read from the controller when requested.
40 Status bit 1 41 Status bit 2	72 Status bit 2
41 Status bit 2 42 Status bit 3	73 Status bit 3 To be read from the controller as an
43 Status bit 4	74 Status bit 4 (instrument state when polling is made from
43 Status bit 4 44 Status bit 5	75 Status bit 5 the master
44 Status bit 5 45 Status bit 6	76 Status bit 6
46 Status bit 7	77 Status bit 7
47 Max temperature ch	80 Max temperature ch Number of maximum connection channels.

ID number of controller communication items

• Communication items of shipment

In shipment of COM-H, communication items of the following are set.

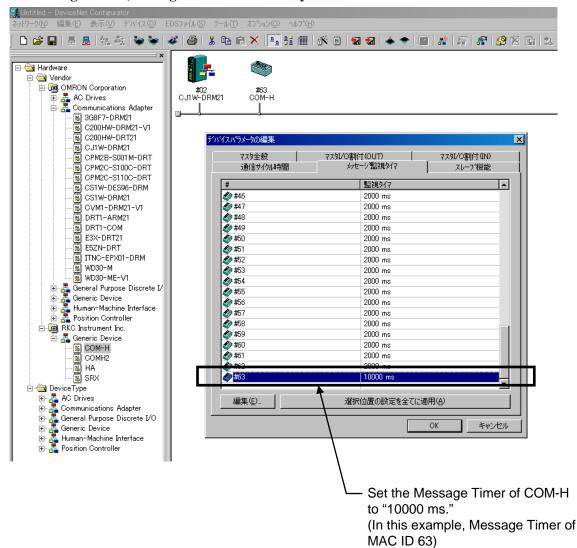
ID	Content	Identification code	Communication item	
1	Data01 ID	19761 (0x4D31)	Temperature input measured value	
2	Data02 ID	20273 (0x4F31)	Heat-side manipulated output	
3	Data03 ID	14649 (0x3939)	Controller status *	*
4	Data04 ID	18225 (0x4731)	PID/AT transfer	E
5	Data05 ID	21297 (0x5331)	Temperature set value	
6	Data06 ID	20529 (0x5031)	Heat-side proportional band	E
7	Data07 ID	18737 (0x4931)	Integral time	L
8	Data08 ID	17457 (0x4431)	Derivative time	E
9	Data09 ID	21552 (0x5430)	Heat-side proportional cycle	I
10	Data10 ID	20546 (0x5042)	PV bias	-
11	Data11 ID	16689 (0x4131)	Alarm 1 set value	
12	Data12 ID	16690 (0x4132)	Alarm 2 set value	
13	Data13 ID	16691 (0x4133)	Heater break alarm 1 set value	
14	Data14 ID	16692 (0x4134)	Heater break alarm 2 set value	
15	Data15 ID	21330 (0x5352)	Control RUN/STOP	
16	Data16 ID	17737 (0x4549)	Operation mode transfer	
17	Data17 ID	17217 (0x4341)	Control response parameter	
18	Data18 ID	18776 (0x494E)	Initialize setting mode	
19	Data19 ID	22601 (0x5849)	Input range	
20	Data20 ID	22597 (0x5845)	Direct/Reverse action selection	
21	Data21 ID	23110 (0x5A46)	CT channel setting	
22	Data22 ID	20530 (0x5032)	Cool-side proportional band	
23	Data23 ID	21553 (0x5431)	Cool-side proportional cycle	
24	Data24 ID	20274 (0x4F32)	Cool-side manipulated output	
25	Data25 ID	22065 (0x5631)	Overlap/Deadband	
26	Data26 ID	19765 (0x4D35)	Analog input (AI) measured value	
27	Data27 ID	16708 (0x4144)	Analog input (AI) alarm 1 status	
28	Data28 ID	16709 (0x4145)	Analog input (AI) alarm 2 status	
29	Data29 ID	16693 (0x4135)	Analog input (AI) alarm 1 set value	
30	Data30 ID	16694 (0x4136)	Analog input (AI) alarm 2 set value	

Bit 0 to 7: Content of ID70 to 77 Bit 8 to 13: Unused Bit 14: Polling I/O inside error Bit 15: Unused

Pefer to ■ Data which a master receives (response) (P.62).

Detail of controller status bit 0 to 7

ID	Content	Identification	Communication item
70	Status bit 0	12336 (0x3030) *	
71	Status bit 1	12336 (0x3030) *	
72	Status bit 2	16708 (0x4144)	Analog input (AI) alarm 1 status
73	Status bit 3	16709 (0x4145)	Analog input (AI) alarm 2 status
74	Status bit 4	16705 (0x4141)	Alarm 1 status
75	Status bit 5	16706 (0x4142)	Alarm 2 status
76	Status bit 6	16945 (0x4231)	Burnout status
77	Status bit 7	16707 (0x4143)	Heater break alarm status


* Identification code is "12336 (0x3030)" when it does not designate communication item.

If a PLC manufactured by OMRON is used and the Connection controller setting (dip switch No. 1) is tuned to ON (CB100/400/500/700/900, REX-F400/700/900, SA100/200, MA900/901, LE100, REX-PG410), set the PLC Message Timer to 10000 ms.

(Setting procedure of Message Timer)

- 1. Click the PLC name being displayed.
- 2. Click [Device] \rightarrow [Parameter] \rightarrow [Edit] in the menu. Thus "Edit Device Parameters" dialog box is displayed.
- 3. Click the [Message Timer] tab to set the COM-H Message Timer to 10000 ms.

< Message Timer, Configuration tool made by OMRON>

6.2.2 Polling I/O communication

Polling I/O communication is the communication that master and slave always execute transmission and reception of data. Used always when checking data items such as measured values, etc. Either one type or four types of measured value to be read can be selected by polling made once

according to the communication mode in Polling I/O communication.

• Communication mode

Select either communicate mode A or B.

- Communication mode A (Compatible mode):

For one time of polling ¹ from the master, sends one measured value ² and instrument status from the slave.

- Communication mode B (Expansion mode):

For one time of polling ¹ from the master, sends four measured value ² and instrument status from the slave.

¹ Each sends data type, channel number and set value to slave.

² For data type, refer to ■ A difference of polling data by communicate mode (P. 63).

For setting method of communication mode, refer to **5.2 Connection Controller and Communication Mode Setting (P. 43)**.

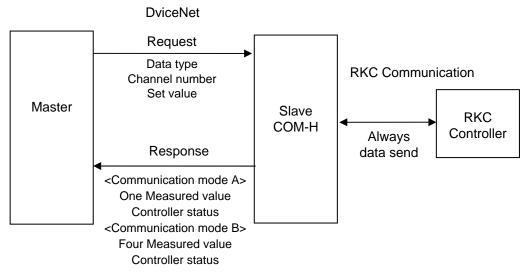


Fig. 6-1 Outline of polling I/O communication

When setting the set value or monitoring the measured value in each channel of the controller, it is necessary to create on the master side a program which sends the data while selecting the data type, channel number * or set value sent from the master.

* Send device address of an instrument in REX-F400/700/900, CB100/400/500/700/900, SA100/200, MA900/901, LE100 and REX-PG410.

For data processed in actual communication, its decimal point is ignored. In addition, data with a minus sign is expressed as 2's complement data.

[Example 1] For a set value of "120.0," set "1200." [Example 2] For a set value of "-1," set "65535." (10000H - 1 = FFFFH = 65535)

The specification of Polling I/O communication is written with **APPENDIX A. Device Profiles/Assembly object (0x04) (P. 112)**.

Data to send from a master (request)

Corresponding object: Assembly object (0x04)

Instance ID: 101 Attribute ID: 3

A master transmits data of the following for slave (COM-H).

Attribute (data) contents

	Items	Data range		
ID		Communication mode A (Compatible mode)	Communication mode B (Expansion mode)	
3	Data type	1 to 4 ^a	1 to 30 ^b	
	Channel number *	1 to 24		
	Set value	Set value of setting items corresponding to data types from 1 to 4 (1 to 30)		

* Specifies the channel number of set value which is sent from the master. In addition, the channel number specified here becomes the channel number of measured value which is sent from the slave.

^a Data types from 1 to 4 correspond to controller communication item setting objects (0xC7: C7Hex) from ID51 to 54 to specify data types of set value to be sent from the master.

^b Data types from 1 to 30 correspond to controller communication item setting objects (0xC7: C7Hex) from ID1 to 30 to specify data types of set value to be sent from the master.

■ Data which a master receives (response)

Corresponding object: Assembly object (0x04)

Instance ID: 100

Attribute ID: 3

For the transmission from a master, slave (COM-H) calls data of the following from controller, and transmit to a master.

	Items	Data range	
ID		Communication mode A (Compatible mode)	Communication mode B (Expansion mode)
3	Measured value	Measured value corresponding to the data type required from the master.	Four types measured value specified from ID61 to 64 by controller communication item setting object (0xC7: C7Hex).
	Controller status	Word type dataBit 0 to 7: Controller status 1Bit 8 to 13: UnusedBit 14: Polling I/O inside error 2Bit 15: Unused	

Attribute (data) contents

¹ The lowest bit of the item designated by IDs 70 to 77 of Controller Communication Item Setting Object (0xC7: C7Hex) is set to controller status Bits 0 to 7.

• When alarm has occurred, become "1."

• When alarm has not occurred, become "0."

² • When no response from the controller for Polling I/O Request, become "1."

• When response of controller for Polling I/O Request is normal, become "0."

■ A difference of polling data by communicate mode

• Communication mode A (Compatible mode)

Measured value corresponding to types of request data to be sent from the master are sent to the master from the COM-H as response data.

- Data type 1

Request data from a master: The set value data specified with ID51 of 0xC7 *. Response data from COM-H: The measured value data specified with ID61 of 0xC7 *.

- Data type 2

Request data from a master: The set value data specified with ID52 of 0xC7 *. Response data from COM-H: The measured value data specified with ID62 of 0xC7 *.

- Data type 3

Request data from a master: The set value data specified with ID53 of 0xC7 *. Response data from COM-H: The measured value data specified with ID63 of 0xC7 *.

- Data type 4

Request data from a master: The set value data specified with ID54 of 0xC7 *. Response data from COM-H: The measured value data specified with ID64 of 0xC7 *.

* Controller communication item setting object (0xC7: C7Hex)

Dete ture	ID of controller communication item setting object (0xC7: C7Hex)		
Data type	Set value	Measurement value	
1	ID51	ID61	
2	ID52	ID62	
3	ID53	ID63	
4	ID54	ID64	

<Set value and measured value corresponding to data type>

• Communication mode B (Expansion mode)

<Measurement value>

The following four types of measured value corresponding to the set value of request data to be sent from the master are sent to the master from the COM-H as response data regardless of these data types.

- The measured value data specified with ID61 of 0xC7 *.

- The measured value data specified with ID62 of 0xC7 *.

- The measured value data specified with ID63 of 0xC7 *.
- The measured value data specified with ID64 of 0xC7 *.

* Controller communication item setting object (0xC7: C7Hex)

<Set value>

The set value of request data to be sent from the master becomes that of the set item specified from among controller communication item setting objects (0xC7: C7Hex) ID1 to 30.

6.2.3 Explicit message communication

Explicit message communication uses an Explicit message defined with DeviceNet, and be communication to execute transmission and reception of data between nodes when it is necessary. Explicit message communication is executed like the following, when COM-H (slave) is connected to a master instrument with DeviceNet, and controller is connected to COM-H.

In Explicit message communication, not only data relating to the controller bur also all of the attributes (data) described in **APPENDIX A. Device Profiles (P. 108)** are subject to being sent or received.

When read data

If the node address (MAC ID), service code (0EH: Get_Attribute_Single), object class ID, instance ID and attribute ID are sent from the master, the node address (MAC ID) thus sent and service code (0EH + 80H *) as well as the data requested are sent from the slave.

* 80H has shown that it is a response message.

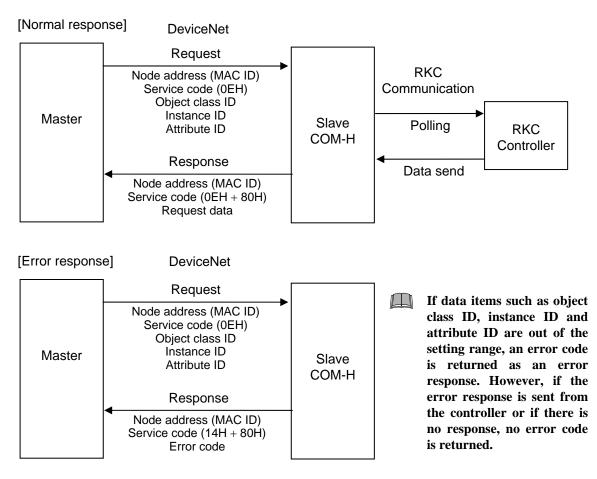


Fig. 6-2 Outline of Explicit message communication (data read)

- Service code 14H of [Error response] has shown that it is error response.
- For Error code of [Error response], refer to DeviceNet specifications.

When write data

If the node address (MAC ID), service code (10H: Set_Attribute_Single), object class ID, instance ID attribute ID and write data are sent from the master, the node address (MAC ID) thus sent and service code (10H + 80H *) are sent from the slave.

* 80H has shown that it is a response message.

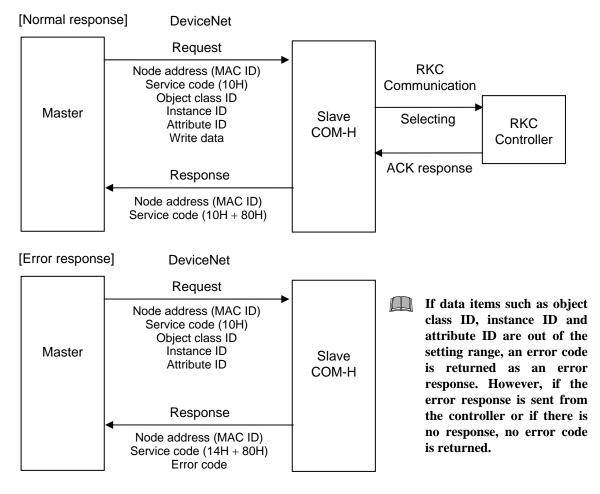


Fig. 6-3 Outline of Explicit message communication (data write)

For data processed in actual communication, its decimal point is ignored. In addition, data with a minus sign is expressed as 2's complement data.

[Example 1] For a set value of "120.0," set "1200."

[Example 2] For a set value of "-1," set "65535."

(10000H - 1 = FFFFH = 65535)

If the item of Controller Communication Item Setting Object (0xC7: C7Hex) is changed via Explicit message communication, always set "Number of maximum connection channels (ID80)" at the end, and turn the power off once and then turn it on again. Thus, the changed data becomes valid.

- Service code 14H of [Error response] has shown that it is error response.
- For Error code of [Error response], refer to DeviceNet specifications.
- The explicit message communication specification of data to be related to SR Mini HG is written with APPENDIX A. Device Profiles/Temperature controller object (0x64) (P. 116) and Controller Communication Item Setting Object (0xC7) (P. 117).

Data setting example

Describe data setting example of the SR Mini HG it with the following.

Corresponding object: Temperature controller object (0x64)

Object class ID:	64
Instance ID:	1 to 24
Attribute ID:	1 to 30

Ш

Object instances (Instance IDs) from 1 to 24 correspond to channels from 1 to 20 of the SR Mini HG. However, temperature input data, analog input (AI) data and CT input data exist in the SR Mini HG and each of them is used from channel 1. Therefore, the temperature input, analog input (AI) and CT input are not identified by Instance ID, but by the contents of data (namely, Attribute ID).

[Example]

• When set 100 in "Alarm 1 set value" of Temperature input channel 1

(Node address of COM-H: 1)Node address (MAC ID):1Service code:10H (Set_Attribute_Single)Object class ID:64Instance ID:1 (Channel 1)Attribute ID:11 (Temperature input, Alarm 1 set value)Write data:100

• When "Analog input measured value" of Analog input channel 1 is read out from slave. (Node address of COM-H: 1)

Node address (MAC ID):1Service code:0EH (Get_Attribute_Single)Object class ID:64Instance ID:1 (Channel 1)Attribute ID:26 (Analog input measured value)

• When any channel which uses the CT in CT input channel 1 (temperature input channel for the H-TIO module corresponding to the CT input channel for the H-CT module) is set to 1

(Node address of COM-H	: 1)
Node address (MAC ID):	1
Service code:	10H (Set_Attribute_Single)
Object class ID:	64
Instance ID:	1 (Channel 1)
Attribute ID:	21 (CT channel setting)
Write data:	1

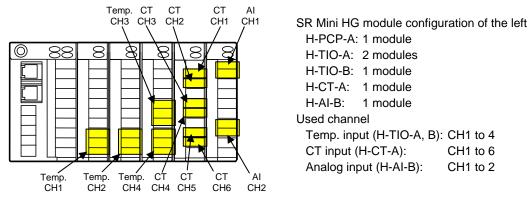


Fig. 6-4 SR Mini HG channel assignment example

6.3 Communication Items List

ID code (Identification code):

ID code is written using both of decimal and hexadecimal (in parentheses) numbers.

Attribute: RO: Read only

Correspond to Service code: 0EH (Get_Attribute_Single) of DeviceNet. For data request of a master, data is read from slave.

R/W: Read and Write

Correspond to Service code: 0EH (Get_Attribute_Single) /Service code: 10H (Set_Attribute_Single) of DeviceNet.

In Get_Attribute_Single, data is read for data request of a master from Slave. In Set_Attribute_Single, write in data for Slave from a master.

WO: Write only Correspond to Service code: 10H (Set_Attribute_Single) of DeviceNet. In Set_Attribute_Single, write in data for Slave from a master.

6.3.1 SR Mini HG

ID code	ldenti -fier	Communication items	Attri- bute	ID code	ldenti -fier	Communication items	Attri- bute
16689 (0x4131)	A1	Alarm 1 set value	R/W	16709 (0x4145)	AE	AI alarm 2 status	RO
16690 (0x4132)	A2	Alarm 2 set value	R/W	16710 (0x4146)	AF	TI alarm 1 status	RO
16691 (0x4133)	A3	Heater break alarm (HBA) set value 1	R/W	16711 (0x4147)	AG	TI alarm 2 status	RO
16692 (0x4134)	A4	Heater break alarm (HBA) set value 2	R/W	16712 (0x4148)	AH	CT module Heater break alarm status	RO
16693 (0x4135)	A5	AI alarm 1 set value	R/W	16714 (0x414A)	AJ	Overall alarm status	RO
16694 (0x4136)	A6	AI alarm 2 set value	R/W	16720 (0x4150)	AP	Control loop break alarm (LBA) status	RO
16695 (0x4137)	A7	Event DO extension alarm set value	R/W	16722 (0x4152)	AR	Alarm interlock release	WO
16696 (0x4138)	A8	TI alarm 1 set value	R/W	16726 (0x4156)	AV	Input error determination point (high limit)	R/W
16697 (0x4139)	A9	TI alarm 2 set value	R/W	16727 (0x4157)	AW	Input error determination point (low limit)	R/W
16705 (0x4141)	AA	Alarm 1 status	RO	16945 (0x4231)	B1	Burnout status	RO
16706 (0x4142)	AB	Alarm 2 status	RO	16946 (0x4232)	B2	TI burnout status	RO
16707 (0x4143)	AC	Heater break alarm (HBA) status	RO	17201 (0x4331)	C1	Local/Computer transfer	RO
16708 (0x4144)	AD	AI alarm 1 status	RO	17202 (0x4332)	C2	CC-Link Selecting flag	RO

	Identi	Communication	Attri-		Identi	Communication	Attri-
ID code	-fier	items	bute	ID code	-fier	items	bute
17206	C6	Control loop break	R/W	18225	G1	PID/AT transfer	R/W
(0x4336)		alarm (LBA) time		(0x4731)			
17217	CA	Control response	R/W	18242	GB	AT bias	R/W
(0x4341)		parameters		(0x4742)			
17228	CL	Module initialization	R/W	18482	H2	DI using selection	R/W
(0x434C)				(0x4832)			
17238	CV	AO zooming high limit	R/W	18483	H3	Cascade DI function	R/W
(0x4356)				(0x4833)		selection	
17239	CW	AO zooming low limit	R/W	18484	H4	PCP module DI	R/W
(0x4357)				(0x4834)		function selection	
17457	D1	Derivative time	R/W	18497	HA	Alarm 1 differential gap	R/W
(0x4431)				(0x4841)			
17478	DF	Number of alarm delay	R/W	18498	HB	Alarm 2 differential gap	R/W
(0x4446)		times		(0x4842)			
17479	DG	Number of TI alarm	R/W	18499	HC	AI alarm 1 differential	R/W
(0x4447)		delay times		(0x4843)		gap	
17480	DH	Number of HBA trigger	R/W	18500	HD	Temperature rise	R/W
(0x4448)		poins		(0x4844)		completion range	
17713	E1	Event DI corresponding	R/W	18501	HE	Temperature rise	RO
(0x4531)		channel selection 1		(0x4845)		completion status	
17714	E2	Event DI corresponding	R/W	18502	HF	AI alarm 2 differential	R/W
(0x4532)		channel selection 2		(0x4846)		gap	
17715	E3	Event DI corresponding	R/W	18503	HG	Event DO extension	R/W
(0x4533)		channel selection 3		(0x4847)		alarm differential gap	
17716	E4	Event DI corresponding	R/W	18504	HH	Setting change rate	R/W
(0x4534)		channel selection 4		(0x4848)		limiter	
17737	EI	Operation mode transfer	R/W	18505	HI	TI alarm 1 differential	R/W
(0x4549)				(0x4849)		gap	
17738	EJ	TI operation mode	R/W	18506	HJ	TI alarm 2 differential	R/W
(0x454A)		transfer		(0x484A)		gap	
17739	EK	Temperature rise	R/W	18512	HP	LBA use selection	R/W
(0x454B)		completion hold		(0x4850)			
17746	ED	function	DO	10515	IIC	Tomporoture	D/W
17746	ER	Error code	RO	18515 (0r/1852)	HS	Temperature rise completion trigger	R/W
(0x4552)	E1	Digital filter	D/337	(0x4853)	1137	AO display scale high	D/W
17969	F1	Digital Inter	R/W	18518	HV	AO display scale lligh	R/W
(0x4631)	EO	AI digital filter	R/W	(0x4856)	1137	AO display scale low	R/W
17970	F2	Ai digital inter	K/ W	18519	HW	AU display scale low	K/W
(0x4632)	E2	TI digital filter	D/W	(0x4857) 18737	T1	Integral time	D/W/
17971	F3	ri uigitai iiiter	R/W		I1	integral unite	R/W
(0x4633)	EV	Desitioning adjustment	D/W	(0x4931)	INT	Initial actting mode	D/W/
18006	FV	Positioning adjustment counter	R/W	18766	IN	Initial setting mode	R/W
(0x4656)		Counter		(0x494E)			

ID code	ldenti -fier	Communication items	Attri- bute	ID code	ldenti -fier	Communication items	Attri- bute
18774 (0x4956)	IV	ON/OFF control R/W differential gap (upper)		19521 (0x4C41)	LA	Alarm 1 interlock	R/W
18775 (0x4957)	IW	ON/OFF control differential gap (lower)	R/W	19522 (0x4C42)	LB	Alarm 2 interlock	R/W
18993 (0x4A31)	J1	Auto/Manual transfer	R/W	19523 (0x4C43)	LC	AI alarm 1 interlock	R/W
19017 (0x4A49)	JI	AI zero point correction	R/W	19524 (0x4C44)	LD	AI alarm 2 interlock	R/W
19018 (0x4A4A)	JJ	AI full scale correction	R/W	19525 (0x4C45)	LE	Event DO extension alarm interlock	R/W
19019 (0x4A4B)	JK	AO zero point adjustment setting	R/W	19526 (0x4C46)	LF	TI alarm 1 interlock	R/W
(0x4A4C) (0x4A4C)	JL	AO full scale adjustment setting	R/W	$\frac{(0x4C40)}{19527}$ (0x4C47)	LG	TI alarm 2 interlock	R/W
(0x4A4C) 19026 (0x4A52)	JR	AO decimal point position	R/W	(0x4C47) 19540 (0x4C54)	LT	DO function selection	R/W
19027 (0x4A53)	JS	AI display scale high	R/W	$\frac{(0x4C54)}{19541}$ (0x4C55)	LU	Event DI logic circuit selection	R/W
(0x4A55) 19028 (0x4A54)	JT	Power supply frequency selection	R/W	$\frac{(0x4C33)}{19543}$ (0x4C57)	LW	Event DI delay timer setting	R/W
19029 (0x4A55)	JU	AI decimal point position	R/W	19761 (0x4D31)	M1	Temperature input measured value (PV)	RO
19030 (0x4A56)	JV	AI display scale low	R/W	19763 (0x4D33)	M3	Current transformer input measured value 1	RO
19268 (0x4B44)	KD	Cascade data selection	R/W	19764 (0x4D34)	M4	Current transformer input measured value 2	RO
19270 (0x4B46)	KF	Cascade ON/OFF	R/W	19765 (0x4D35)	M5	AI measured value	RO
19271 (0x4B47)	KG	Cascade gain	R/W	19766 (0x4D36)	M6	AO output monitor	RO
19272 (0x4B48)	KH	Cascade monitor	RO	19767 (0x4D37)	M7	TI measured value	RO
19273 (0x4B49)	KI	Cascade bias	R/W	19768 (0x4D38)	M8	Positioning monitor	RO
19505 (0x4C31)	L1	H-DI-A module input status	RO	20042 (0x4E4A)	NJ	AI operation mode transfer	R/W
19507 (0x4C33)	L3	PCP module DI status	RO	20273 (0x4F31)	01	Heat-side manipulated output value	RO
19508 (0x4C34)	L4	Event DI contact input monitor	RO	20274 (0x4F32)	O2	Cool-side manipulated output value	RO
19509 (0x4C35)	L5	Event DI logic input monitor	RO	20289 (0x4F41)	OA	Alarm 1 action at input error	R/W

ID code	Identi	Communication	Attri-	ID code	Identi	Communication	Attri-
ID COUE	-fier	items	bute		-fier	items	bute
20290	OB	Alarm 2 action at	R/W	21041	R1	Event DI type selection	R/W
(0x4F42)		input error		(0x5231)		1	
20291	OC	TI alarm 1 action at	R/W	21042	R2	Event DI type selection	R/W
(0x4F43)		input error		(0x5232)		2	
20292	OD	TI alarm 2 action at	R/W	21043	R3	Event DI type selection	R/W
(0x4F44)		input error		(0x5233)		3	
20293	OE	Manipulated output	R/W	21044	R4	Event DI type selection	R/W
(0x4F45)		value at input error		(0x5234)		4	
20296	OH	Output limiter	R/W	21297	S 1	Temperature set value	R/W
(0x4F48)		(high limit)		(0x5331)		(SV)	
20300	OL	Output limiter	R/W	21302	S6	AO output set value	R/W
(0x4F4C)		(low limit)		(0x5336)			
20302	ON	Manual output value	R/W	21320	SH	Setting limiter	R/W
(0x4F4E)				(0x5348)		(high limit)	
20303	00	Manual Positioning	R/W	21324	SL	Setting limiter	R/W
(0x4F4F)		output value		(0x534C)		(low limit)	
20307	OS	Integrated output	R/W	21330	SR	Control RUN/STOP	R/W
(0x4F53)		limiter		(0x5352)			
20313	OY	AO corresponding	R/W	21336	SX	Start determination	R/W
(0x4F59)		channel setting		(0x5358)		point	
20529	P1	Heat-side proportional	R/W	21552	T0	Heat-side proportioning	R/W
(0x5031)		band		(0x5430)		cycle time	
20530	P2	Cool-side proportional	R/W	21553	T1	Cool-side proportioning	R/W
(0x5032)		band		(0x5431)		cycle time	
20546	PB	PV bias	R/W	21555	T3	Temperature rise	R/W
(0x5042)				(0x5433)		completion soak time	
20547	PC	PV bias (TI module)	R/W	21577	TI	Number of event DO	R/W
(0x5043)				(0x5449)		extension alarm delay	
						times	
20552	PH	Output change rate	R/W	21578	TJ	Motor time	R/W
(0x5048)	DI	limiter (up)	5 711	(0x544A)			
20556	PL	Output change rate	R/W	21579	TK	Number of AI alarm	R/W
(0x504C)		limiter (down)		(0x544B)		delay times	
20567	PW	AO output change rate	R/W	22065	V1	Overlap/Deadband	R/W
(0x5057)	02	limiter		(0x5631)	N/O		DAV
20787	Q3	Event DO status	RO	22066	V2	LBA deadband	R/W
(0x5133)	04	Emert DO en en 1	DAV	(0x5632)	V2	Desitioning	DAV
20788	Q4	Event DO manual	R/W	22067	V3	Positioning output	R/W
(0x5134)	05	output value	DO	(0x5633)	X 7 A	neutral zone	D/117
20789	Q5	Event DI logic input	RO	22081	VA	AI moving aberage	R/W
(0x5135)		monitor		(0x5641)		l	

ID as da	Identi	Communication	Attri-		Identi	Communication	Attri-
ID code	-fier	items	bute	ID code	-fier	items	bute
22091	VK	AI input range number	R/W	22596	XD	AI alarm 2 type	R/W
(0x564B)				(0x5844)		selection	
22096	VP	PCP module DO type	R/W	22597	XE	Direct/Reverse action	R/W
(0x5650)		selection		(0x5845)		selection	
22097	VQ	PCP module DI type	R/W	22598	XF	Event DO function	R/W
(0x5651)		selection		(0x5846)		selection	
22099	VS	PCP module DO	R/W	22599	XG	Event DO	R/W
(0x5653)		de-energized selection		(0x5847)		corresponding channel setting	
22321	W1	Event DI reversal	R/W	22600	XH	Event DO mode	R/W
(0x5731)		selection 1		(0x5848)		transfer	
22322	W2	Event DI reversal	R/W	22601	XI	Input range number	R/W
(0x5732)		selection 2		(0x5849)			
22323	W3	Event DI reversal	R/W	22602	XJ	TI input range number	R/W
(0x5733)		selection 3		(0x584A)			
22324	W4	Event DI reversal	R/W	22603	XK	DI function selection	R/W
(0x5734)		selection 4	5 777	(0x584B)		<u> </u>	D (11)
22337	WA	Alarm 1 hold action	R/W	22604	XL	Cascade tracking	R/W
(0x5741)			5 777	(0x584C)	***		D (111
22338	WB	Alarm 2 hold action	R/W	22606	XN	Hot/Cold start selection	R/W
(0x5742)	MAG		DAV	(0x584E)	NO		DAV
22339	WC	AI alarm 1 hold action	R/W	22607	XO	AO function selection	R/W
(0x5743)	WD		D/W	(0x584F)	VD	TT - 1 1	DAV
22340 (0x5744)	WD	AI alarm 2 hold action	R/W	22608 (0x5850)	XP	TI alarm 1 type	R/W
22341	WE	TI alarm 1 hold action	R/W	22609	XQ	TI alarm 2 type	R/W
(0x5745)	W L		IX/ W	(0x5851)	лų	11 alalii 2 type	K/ W
22342	WF	TI alarm 2 hold action	R/W	22610	XR	Temperature module	RO
(0x5746)	**1	11 alarm 2 note action	10/ 11	(0x5852)	m	type	KO
22344	WH	Action at input error	R/W	22613	XU	Decimal point position	R/W
(0x5748)	** 11	(high limit)	1\/ \/	(0x5855)	AU	Decimal point position	11/ 11
22348	WL	Action at input error	R/W	22614	XV	Display scale high	R/W
(0x574C)	W L	(low limit)	1\/ \/	(0x5856)	2 X V	Display scale lingh	11/ 11
22577	X1	Control RUN/STOP	R/W	22615	XW	Display scale low	R/W
(0x5831)	211	holding	10/11	(0x5857)	21.00	Display scale low	10 11
22593	XA	Alarm 1 type selection	R/W	23105	ZA	Memory area number	R/W
(0x5841)	4 1 1	riann r type selection	10 11	(0x5A41)			
22594	XB	Alarm 2 type selection	R/W	23110	ZF	CT channel setting	R/W
(0x5842)				(0x5A46)		or enumer betting	10
22595	XC	AI alarm 1 type	R/W	23128	ZX	Interval time setting	R/W
(0x5843)		selection	1. 11	(0x5A58)		inter var time betting	

For details, refer to the SR Mini HG SYSTEM Communication Instruction Manual (IMSRM09-E^D) or Power Supply/CPU Module H-PCP-J Instruction Manual (IMS01J02-E^D).

6.3.2 CB100/400/500/700/900

	Identi	Communication	Attri-
ID code	-fier	items	bute
16689	A1	Alarm 1 setting	R/W
(0x4131)		6	
16690	A2	Alarm 2 setting	R/W
(0x4132)			
16691	A3	Heater break alarm 1	R/W
(0x4133)		setting	
16692	A4	Heater break alarm 2	R/W
(0x4134)		setting	
16693	A5	Control loop break	R/W
(0x4135)		alarm (LBA) setting	
16694	A6	LBA deadband	R/W
(0x4136)			
16705	AA	Alarm 1 status	RO
(0x4141)			
16706	AB	Alarm 2 status	RO
(0x4142)			
16945	B1	Burnout	RO
(0x4231)			
17457	D1	Derivative time	R/W
(0x4431)			
17746	ER	Error code	RO
(0x4552)	~ .		
18225	G1	Autotuning (AT)	R/W
(0x4731)	~		5 711
18226	G2	Self tuning (ST)	R/W
(0x4732)	T 1	x . 1.1	DAU
18737	I1	Integral time	R/W
(0x4931)	N (1		DO
19761	M1	Measured value (PV)	RO
(0x4D31)	M2	Current transformer	RO
19762	1012	Current transformer	ĸŬ
(0x4D32) 19763	M2	input 1	DO
(0x4D33)	M3	Current transformer input 2	RO
	D1	•	D/W/
20529 (0x5031)	P1	Heat-side proportional band	R/W
20530	P2	Cool-side proportional	R/W
(0x5032)	ΓZ	band	IX/ VV
20546	PB	PV bias	R/W
(0x5042)		1 v 01a5	17/ 18
$(0\Lambda J 0 + 2)$			

ID code	ldenti -fier	Communication items	Attri- bute
21297 (0x5331)	S 1	Set value (SV)	R/W
21330 (0x5352)	SR	RUN/STOP transfer	R/W
21552 (0x5430)	T0	Heat-side proportioning cycle time	R/W
21553 (0x5431)	T1	Cool-side proportioning cycle time	R/W
22065 (0x5631)	V1	Overlap/Deadband	R/W
22321 (0x5731)	W1	Anti-reset windup	R/W

For details, refer to the CB100/CB400/CB500/CB700/CB900 Communication Instruction Manual (IMCB03-E□).

6.3.3 REX-F400/700/900

ID code	Identi	Communication	Attri-	ID code	Identi	Communication	Attri-
ID code	-fier	items	bute	ID code	-fier items		bute
16689	A1	Alarm 1 setting	R/W	18225 G1		PID/Autotuning transfer	R/W
(0x4131)		C C		(0x4731)			
16690	A2	Alarm 2 setting	R/W	18242	GB	AT bias	R/W
(0x4132)				(0x4742)			
16691	A3	Heater break alarm	R/W	18497	HA	Alarm 1 differential gap	R/W
(0x4133)		setting		(0x4841)			
16705	AA	Alarm 1 status	RO	18498	HB	Alarm 2 differential gap	R/W
(0x4141)				(0x4842)			
16706	AB	Alarm 2 status	RO	18504	HH	Setting change rate	R/W
(0x4142)				(0x4848)		limiter	
16707	AC	Heater break alarm	RO	18518	HV	Analog output range	R/W
(0x4143)		output		(0x4856)		(high limit)	
16726	AV	Input error	R/W	18519	HW	Analog output range	R/W
(0x4156)		determination point		(0x4857)		(low limit)	
		(high limit)					
16727	AW	Input error	R/W	18737	I1	Integral time	R/W
(0x4157)		determination point		(0x4931)			
		(low limit)					
16945	B1	Burnout	RO	18774	IV	ON/OFF control	R/W
(0x4231)				(0x4956)		differential gap (upper)	
16946	B2	Feedback resistance	RO	18775	IW	ON/OFF control	R/W
(0x4232)	~.	(FBR) input burnout		(0x4957)	~ .	differential gap (lower)	
17201	C1	Local/Remote transfer	R/W	18993	J1	Auto/Manual transfer	R/W
(0x4331)	~ .	a 1	D (111	(0x4A31)			
17217	CA	Control response	R/W	19521	LA	Analog output	R/W
(0x4341)		parameter		(0x4C41)		specification selection	
17457	D1	Derivative time	R/W	19532	LL	Area lock	R/W
(0x4431)		D 1 1 1	D /11/	(0x4C4C)			
17473	DA	Bar-graph display	R/W	19761	M1	Measured value (PV)	RO
(0x4441)	DU	selection	D /11/	(0x4D31)			
17480	DH	Operation RUN/STOP	R/W	19762 (0=4D22)	M2	Feedback resistance	RO
(0x4448)	DD	display lock	D/M	(0x4D32)		input value (POS)	DO
17488	DP	PV low input cut-off	R/W	19763	M3	Current transformer	RO
(0x4450)		T 1/ T 1	D (11)	(0x4D33)		input value	D
17713	E1	Local/External	R/W	20033	NA	Alarm 1	R/W
(0x4531)		memory area transfer		(0x4E41)		energized/de-energized	
17969	F1	PV digital filter	R/W	20034	NB	Alarm 2	R/W
(0x4631)				(0x4E42)		energized/de-energized	
17970	F2	RS digital filter	R/W	20273	01	Heat-side manipulated	RO
(0x4632)				(0x4F31)		output	

ID ee de	Identi	Communication	Attri-		Identi	Communication	Attri-
ID code	-fier	items	bute	ID code	-fier	items	bute
20274	O2	Cool-side manipulated	RO	21330	SR	Operation RUN/STOP	R/W
(0x4F32)		output		(0x5352) transfer			
20289	OA	Alarm 1 action at	R/W	21336	SX	Start determination	R/W
(0x4F41)		input error		(0x5358)		point	
20290	OB	Alarm 2 action at	R/W	21337	SY	Action selection	R/W
(0x4F42)		input error		(0x5359)		feedback resistance	
						(FBR) input break	
20293	OE	Manual output at input	R/W	21552	T0	Heat-side proportioning	R/W
(0x4F45)		error		(0x5430)		cycle time	
20296	OH	Output limiter	R/W	21553	T1	Cool-side proportioning	R/W
(0x4F48)		(high limit)		(0x5431)		cycle time	
20300	OL	Output limiter	R/W	21572	TD	Alarm 1 timer setting	R/W
(0x4F4C)		(low limit)		(0x5444)		C	
20302	ON	Manipulated output	R/W	21575	TG	Alarm 2 timer setting	R/W
(0x4F4E)		value (MV)		(0x5447)			
20305	OQ	Shortest cooling	R/W	22065	V1	Overlap/Deadband	R/W
(0x4F51)	_	output ON time		(0x5631)			
20529	P1	Heat-side proportional	R/W	22066	V2	Neutral zone	R/W
(0x5031)		band		(0x5632)			
20530	P2	Cool-side proportional	R/W	22337	WA	Alarm 1 hold action	R/W
(0x5032)		band		(0x5741)		selection	
20546	PB	PV bias	R/W	22338	WB	Alarm 2 hold action	R/W
(0x5042)				(0x5742)		selection	
20552	PH	Output change rate	R/W	22344	WH	Action selection at	R/W
(0x5048)		limiter (up)		(0x5748)		input error (high limit)	
20556	PL	Output change rate	R/W	22348	WL	Action selection at	R/W
(0x504C)		limiter (down)		(0x574C)		input error (low limit)	
21057	RA	Local/Computer mode	RO	22577	X1	PV input type selection	R/W
(0x5241)		identification		(0x5831)			
21058	RB	RS bias	R/W	22593	XA	Alarm 1 action	R/W
(0x5242)				(0x5841)		selection	
21074	RR	RS ratio	R/W	22594	XB	Alarm 2 action	R/W
(0x5252)				(0x5842)		selection	
21297	S 1	Set value (SV)	R/W	22597	XE	Direct/Reverse action	R/W
(0x5331)	<i>a</i> -			(0x5845)		selection	
21298	S2	Remote set value (RS)	R/W	22600	XH	Square root extraction	R/W
(0x5332)	a	<u> </u>		(0x5848)		selection	
21320	SH	Setting limiter	R/W	22604	XL	SV tracking selection	R/W
(0x5348)		(high limit)	D	(0x584C)	***		D ~~·
21324	SL	Setting limiter	R/W	22606	XN	Hot/Cold start selection	R/W
(0x534C)		(low limit)		(0x584E)			

ID code	ldenti -fier	Communication items	Attri- bute
22610 (0x5852)	XR	RS input type selection	R/W
(0x5852) 22613	XU	Decimal point	R/W
(0x5855)		position selection	
22614 (0x5856)	XV	Input programmable range (high limit)	R/W
22615 (0x5857)	XW	Input programmable range (low limit)	R/W
23105 (0x5A41)	ZA	Control area number transfer	R/W

For details, refer to the **REX-F400/F700/F900 Communication Instruction Manual** (**IM900F10-E**).

6.3.4 SA100/200

	Identi	Communication	Attri-	
ID code	-fier	items	bute	ID cod
16689	A1	Alarm 1 set value	R/W	20530
(0x4131)				(0x503)
16690	A2	Alarm 2 set value	R/W	20546
(0x4132)				(0x5042
16693	A5	Control loop break	R/W	21297
(0x4135)		alarm		(0x533
16694	A6	Control loop break	R/W	21330
(0x4136)		alarm deadband		(0x535)
16705	AA	Alarm 1 status	RO	21552
(0x4141)				(0x543
16706	AB	Alarm 2 status	RO	21553
(0x4142)				(0x543
16945	B1	Burnout	RO	22065
(0x4231)	21			(0x563
17457	D1	Derivative time	R/W	22321
(0x4431)				(0x573
17730	EB	EEPROM storage	R/W	
(0x4542)		mode		
17741	EM	EEPROM storage	RO	
(0x454D)		status		
17746	ER	Error code	RO	
(0x4552)				
17969	F1	Digital filter	R/W	
(0x4631)				
18225	G1	Autotuning	R/W	
(0x4731)				
18226	G2	Self-tuning	R/W	
(0x4732)				
18737	I1	Integral time	R/W	
(0x4931)				
19761	M1	Measured value (PV)	RO	
(0x4D31)				
20273	01	Heat-side manipulated	RO	
(0x4F31)		output value		
20274	O2	Cool-side manipulated	RO	
(0x4F32)		output value		
20529	P1	Heat-side proportional	R/W	
(0x5031)		band		

ID code	Identi	Communication	Attri-
	-fier	items	bute
20530	P2	Cool-side proportional	R/W
(0x5032)		band	
20546	PB	PV bias	R/W
(0x5042)			
21297	S 1	Set value (SV)	R/W
(0x5331)			
21330	SR	RUN/STOP function	R/W
(0x5352)			
21552	T0	Heat-side	R/W
(0x5430)		proportioning cycle	
		time	
21553	T1	Cool-side	R/W
(0x5431)		proportioning cycle	
		time	
22065	V1	Overlap/Deadband	R/W
(0x5631)			
22321	W1	Anti-reset windup	R/W
(0x5731)			

For details, refer to the SA100 Communication Instruction Manual (IMR01J02-E^I), SA200 Communication Instruction Manual (IMR01D02-E^I).

6.3.5 MA900/901

ID code	Identi	Communication	Attri-	ID code	Identi	Communication	Attri-
	-fier	items	bute		-fier	items	bute
16689	A1	Alarm 1 set value	R/W	18770	IR	Communication speed	R/W
(0x4131)				(0x4952)			
16690	A2	Alarm 2 set value	R/W	18772	IT	Interval time	R/W
(0x4132)			D (IV	(0x4954) 19505	T 1	DI	DO
16691 (0x4133)	A3	Alarm 3 set value	R/W	(0x4C31)	L1	DI sutatus	RO
16705	AA	Alarm 1 status	RO	19531	LK	Lock level 1	R/W
(0x4141)				(0x4C4B)			
16706	AB	Alarm 2 status	RO	19532	LL	Lock level 2	R/W
(0x4142)				(0x4C4C)			
16707	AC	Alarm 3 status	RO	19761	M1	Measured value (PV)	RO
(0x4143)				(0x4D31)			
16714	AJ	Output status	RO	19762	M2	Current transformer 1	RO
(0x414A)				(0x4D32)		measured value	
16945	B1	Burnout status	RO	19763	M3	Current transformer 2	RO
(0x4231)				(0x4D33)		measured value	
17457	D1	Derivative time	R/W	19795	MS	Set value monitor	RO
(0x4431)				(0x4D53)			
17730	EB	EEPROM storage	R/W	20017	N1	Control loop break	R/W
(0x4542)		mode	D (IV	(0x4E31)	270	alarm deadband (LBD)	DAV
17737	EI	Used/unused of	R/W	20018	N2	Heater break alarm 2	R/W
(0x4549)		channel	DO	(0x4E32)	01	(MA900 only)	DO
17741	EM	EEPROM storage	RO	20273	01	Manipulated output	RO
(0x454D)	ED	status	DO	(0x4F31)	00	value	DO
17746	ER	Error code	RO	20274	O2	Cool-side manipulated	RO
(0x4552)				(0x4F32)		output value (MA900 only)	
17969	F1	Digital filter	R/W	20529	P1	Proportional band	R/W
(0x4631)		2 - Giul Intol	10 11	(0x5031)	• •		10,11
18225	G1	PID/AT transfer	R/W	20530	P2	Cool-side Proportional	R/W
(0x4731)	01		10	(0x5032)		band	10
				(,		(MA900 only)	
18504	HH	Setting change rate	R/W	20546	PB	PV bias	R/W
(0x4848)		limiter		(0x5042)			
18737	I1	Integral time	R/W	21297	S1	Set value (SV)	R/W
(0x4931)		C		(0x5331)		. ,	
18768	IP	Device address	R/W	21330	SR	RUN/STOP transfer	R/W
(0x4950)				(0x5352)			
18769	IQ	Data bit configuration	R/W	21552	T0	Proportioning cycle	R/W
(0x4951)		C		(0x5430)		time	

ID code	ldenti -fier	Communication items	Attri- bute
21553	T1	Cool-side	R/W
(0x5431)		Proportioning cycle	
		time	
		(MA900 only)	
21580	TL	Scan interval time	R/W
(0x544C)			
22065	V1	Overlap/Deadband	R/W
(0x5631)			
22321	W1	Anti-reset windup	R/W
(0x5731)			
23105	ZA	Memory area number	R/W
(0x5A41)		selection	

For details, refer to the MA900/MA901 Communication Instruction Manual (IMR01H02-E^{II}).

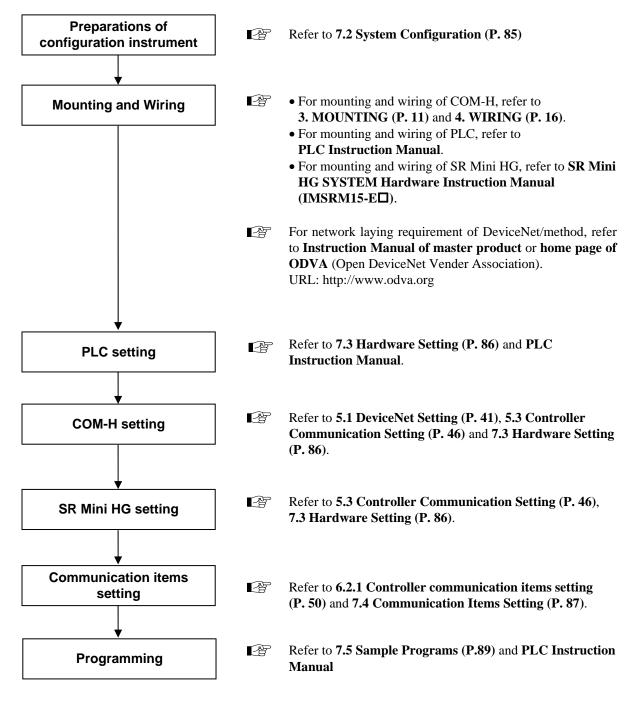
6.3.6 LE100

ID code	Identi		Attri-	ID code	Identi	Communication	Attri-
	-fier	items	bute		-fier	items	bute
16689	A1	Output 1 set value	R/W	17473	DA	Output 1 deviation	R/W
(0x4131)				(0x4441)		value setting	
16690	A2	Output 2 set value	R/W	17474	DB	Output 2 deviation	R/W
(0x4132)				(0x4442)		value setting	
16691	A3	Output 3 set value	R/W	17475	DC	Output 3 deviation	R/W
(0x4133)				(0x4443)		value setting	
16692	A4	Output 4 set value	R/W	17476	DD	Output 4 deviation	R/W
(0x4134)				(0x4444)		value setting	
16693	A5	Output 5 set value	R/W	17477	DE	Output 5 deviation	R/W
(0x4135)				(0x4445)		value setting	
16694	A6	Output 6 set value	R/W	17478	DF	Output 6 deviation	R/W
(0x4136)				(0x4446)		value setting	
16695	A7	Output 7 set value	R/W	17479	DG	Output 7 deviation	R/W
(0x4137)		-		(0x4447)		value setting	
16696	A8	Output 8 set value	R/W	17480	DH	Output 8 deviation	R/W
(0x4138)				(0x4448)		value setting	
16697	A9	Actual liquid output	WO	17491	DS	DI function selection	R/W
(0x4139)		setting		(0x4453)			
16705	AA	Output 1 status	RO	17731	EC	Error release	WO
(0x4141)				(0x4543)			
16706	AB	Output 2 status	RO	17735	EG	End specific gravity	R/W
(0x4142)			_	(0x4547)	_	setting	
16707	AC	Output 3 status	RO	17746	ER	Error code	RO
(0x4143)				(0x4552)			
16708	AD	Output 4 status	RO	17969	F1	Digital filter	R/W
(0x4144)		1		(0x4631)		C	
16709	AE	Output 5 status	RO	18497	HA	Output 1 differential	R/W
(0x4145)		1		(0x4841)		gap	
16710	AF	Output 6 status	RO	18498	HB	Output 2 differential	R/W
(0x4146)			_	(0x4842)		gap	
16711	AG	Output 7 status	RO	18499	HC	Output 3 differential	R/W
(0x4147)				(0x4843)		gap	
16712	AH	Output 8 status	RO	18500	HD	Output 4 differential	R/W
(0x4148)		p at o status		(0x4844)		gap	
16730	AZ	Emptiness adjustment	R/W	18501	HE	Output 5 differential	R/W
(0x415A)			10 11	(0x4845)		gap	
16945	B1	Burnout	RO	18502	HF	Output 6 differential	R/W
(0x4231)		Burnout	NO	(0x4846)		gap	11/ 11
17239	CW	Initializing the number	WO	18503	HG	Output 7 differential	R/W
(0x4357)		of wafer processing		(0x4847)	110	<u> </u>	11/ 11
(0A+JJI)		times		(01+0+7)		gap	

ID code	Identi	Communication	Attri-	ID code	Identi	Communication	Attri-
	-fier	items	bute		-fier	items	bute
18504	HH	Output 8 differential	R/W	19512	L8	Linearizing table	R/W
(0x4848)		gap		(0x4C38)		setting 8	
18512	HP	Peak hold monitor	RO	19513	L9	Linearizing table	R/W
(0x4850)		D		(0x4C39)	. .	setting 9	
18513	HQ	Bottom hold monitor	RO	19521	LA	Linearizing table	R/W
(0x4851)	UD	TT 11	WO	(0x4C41)	I.T.	setting 10	DAV
18514	HR	Hold reset	WO	19540	LT	Number of linearizing	R/W
(0x4852)	1117	M	DAV	(0x4C54)	TT	table setting	DAV
18518 (0x4856)	HV	Monitor output high	R/W	19541 (0x4C55)	LU	Decimal point position selection	R/W
18519	HW	Monitor output high	R/W	19761	M1	Measured value (PV)	RO
(0x4857)	11 VV	Monitor output high	IX/ VV	(0x4D31)	101 1	Wiedsuieu value (F V)	ĸo
18770	IR	Interlock release	WO	19788	ML	Scale low monitor	RO
(0x4952)		interioen release		(0x4D4C)	1112		no
18771	IS	Default setting	WO	19784	MH	Scale high monitor	RO
(0x4953)		6		(0x4D48)		C	
18993	J1	Scale 1 actual liquid	R/W	19789	MM	Volume/level display	R/W
(0x4A31)		setting		(0x4D4D)		selection	
18994	J2	Scale 2 actual liquid	R/W	19799	MW	Number of wafer	RO
(0x4A32)		setting		(0x4D57)		processing times monitor	
18995	J3	Correction on the low	WO	19802	MZ	Amount of emptiness	RO
(0x4A33)		limit side by actual liquid 2		(0x4D5A)		correction monitor	
18996	J4	Correction on the high	WO	20033	NA	Output 1 a/b contact	R/W
(0x4A34)		limit side by actual liquid 2		(0x4E41)		selection	
19504	LO	Linearizing table	R/W	20034	NB	Output 2 a/b contact	R/W
(0x4C30)		setting 0		(0x4E42)		selection	
19505	L1	Linearizing table	R/W	20035	NC	Output 3 a/b contact	R/W
(0x4C31)		setting 1		(0x4E43)		selection	
19506	L2	Linearizing table	R/W	20036	ND	Output 4 a/b contact	R/W
(0x4C32)	1.2	setting 2	DAV	(0x4E44)	NE	selection	DAV
19507	L3	Linearizing table	R/W	20037 (0x4E45)	NE	Output 5 a/b contact selection	R/W
(0x4C33) 19508	L4	setting 3 Linearizing table	R/W	20038	NF	Output 6 a/b contact	R/W
(0x4C34)	L4	setting 4	IX/ VV	(0x4E46)	TAT.	selection	12/ 19
19509	L5	Linearizing table	R/W	20039	NG	Output 7 a/b contact	R/W
(0x4C35)		setting 5		(0x4E47)		selection	
19510	L6	Linearizing table	R/W	20040	NH	Output 8 a/b contact	R/W
(0x4C36)		setting 6		(0x4E48)		selection	
19511	L7	Linearizing table	R/W	20801	QA	Output 1 interlocking	R/W
(0x4C37)		setting 7		(0x5141)	-	function selection	

ID code	Identi	Communication	Attri-	ID code	Identi	Communication	Attri-
	-fier	items	bute		-fier	items	bute
20802	QB	Output 2 interlocking	R/W	22356	WT	Number of wafer	WO
(0x5142)		function selection		(0x5754)		processing times	
20803	QC	Output 3 interlocking	R/W	22593	XA	Output 1 type selection	R/W
(0x5143)	_	function selection		(0x5841)			
20804	QD	Output 4 interlocking	R/W	22594	XB	Output 2 type selection	R/W
(0x5144)		function selection		(0x5842)			
20805	QE	Output 5 interlocking	R/W	22595	XC	Output 3 type selection	R/W
(0x5145)		function selection		(0x5843)			
20806	QF	Output 6 interlocking	R/W	22596	XD	Output 4 type selection	R/W
(0x5146)		function selection		(0x5844)			
20807	QG	Output 7 interlocking	R/W	22597	XE	Output 5 type selection	R/W
(0x5147)		function selection		(0x5845)			
20808	QH	Output 8 interlocking	R/W	22598	XF	Output 6 type selection	R/W
(0x5148)		function selection		(0x5846)			
21319	SG	Specific gravity setting	R/W	22599	XG	Output 7 type selection	R/W
(0x5347)				(0x5847)			
21328	SP	Specific gravity setting	R/W	22600	XH	Output 8 type selection	R/W
(0x5350)		transfer		(0x5848)			
21331	SS	Specific gravity	R/W	22616	XX	Scale low	R/W
(0x5353)		correction function		(0x5858)			
		selection					
21335	SW	Number of wafer	R/W				
(0x5357)		processing times					
		setting					
21569	TA	Output 1 timer setting	R/W				
(0x5441)							
21570	TB	Output 2 timer setting	R/W				
(0x5442)							
21571	TC	Output 3 timer setting	R/W				
(0x5443)							
21572	TD	Output 4 timer setting	R/W				
(0x5444)							
21573	TE	Output 5 timer setting	R/W				
(0x5445)							
21574	TF	Output 6 timer setting	R/W				
(0x5446)							
21575	TG	Output 7 timer setting	R/W				
(0x5447)							
21576	TH	Output 8 timer setting	R/W				
(0x5448)							
21838	UN	Unit setting	R/W				
(0x554E)							

For details, refer to the **LE100 Communication Instruction Manual (IMR01C02-E**D).


6.3.7 REX-PG410

ID code	ldenti -fier	Communication items	Attri- bute	ID code	ldenti -fier	Communication items	Attri- bute
16689 (0x4131)	A1	First alarm setting	R/W	20034 (0x4E42)	NB	Second alarm Energized/ De-energized	R/W
16690 (0x4132)	A2	Second alarm setting	R/W	20565 (0x5055)	PU	Pressure unit setting	R/W
16705 (0x4141)	AA	First alarm monitor	RO	20801 (0x5141)	QA	First alarm interlock function	R/W
16706 (0x4142)	AB	Second alarm monitor	RO	20802 (0x5142)	QB	Second alarm interlock function	R/W
16730 (0x415A)	AZ	Auto-zero	R/W	21572 (0x5444)	TD	First alarm timer setting	R/W
16945 (0x4231)	B1	Burnout	RO	21575 (0x5447)	TG	Second alarm timer setting	R/W
17746 (0x4552)	ER	Error data	RO	21580 (0x544C)	TL	Display timer setting	R/W
18241 (0x4741)	GA	Gain setting	R/W	21583 (0x544F)	ТО	Analog output timer setting	R/W
18497 (0x4841)	HA	First alarm differential gap	R/W	22593 (0x5841)	XA	First alarm action selection	R/W
18498 (0x4842)	HB	Second alarm differential gap	R/W	22594 (0x5842)	XB	Second alarm action selection	R/W
18512 (0x4850)	HP	Peak hold monitor	RO	22601 (0x5849)	XI	Input type selection	R/W
18513 (0x4851)	HQ	Bottom hold monitor	RO	22613 (0x5855)	XU	Decimal point position selection	R/W
18514 (0x4852)	HR	Hold reset	WO	22614 (0x5856)	XW	Low-limit setting of pressure display	R/W
18518 (0x4856)	HV	High-limit setting of analog output	R/W	22615 (0x5857)	XV	High-limit setting of pressure display	R/W
18519 (0x4857)	HW	Low-limit setting of analog output	R/W				
18754 (0x4942)	IB	Action of input break selection	R/W				
18770 (0x4952)	IR	Alarm interlock release	WO				
19529 (0x4C49)	LI	Linearize type selection	R/W				
19761 (0x4D31)	M1	Measured value (PV)	RO				
20033 (0x4E41)	NA	First alarm Energized/ De-energized	R/W				

For details, refer to the **REX-PG410 Communication Instruction Manual** (**IM41PG02-E**).

In this Chapter, an example of using DeviceNet communication when the COM-H and SR Mini HG are connected to a PLC as a master.

7.1 Handling Procedures

7.2 System Configuration

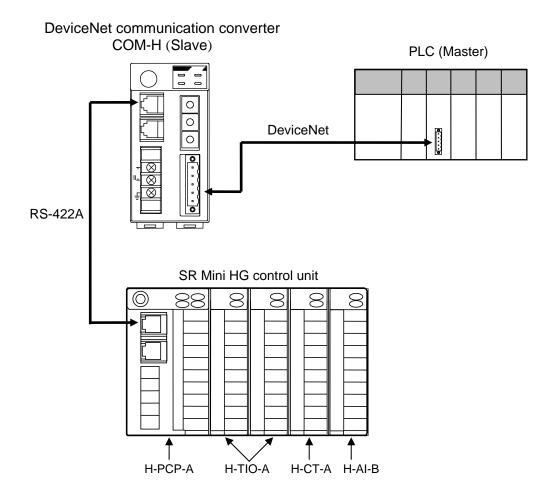


Fig. 7-1 Example of system configurations

Use instruments

• DeviceNet communication converter

COM-H-3-90-1-N

• SR Mini HG SYSTEM

Power/CPU module H-PCP-A, Temperature control module H-TIO-A, Current transformer input module H-CT-A, Analog input module H-AI-B

- PLC
 - SYSMAC CS1 (OMRON product)

CPU unit: CS1G-CPU44, DeviceNet master unit: C200HW-DRM21-V1

or

Control Logix 5550 [Rockwell Inc. (Allen-Bradley)]
 CPU module: 1756-L1, LINK module (DeviceNet): 1756-DNB

7.3 Hardware Setting

Set each hardware's as the following.

PLC setting

Set PLC in requirement of the following.

[DeviceNet communication requirement]

- Node address: 0
- DeviceNet communication speed: 125 kbps
- Unit Number: 0

For setting method, refer to Instruction Manual for PLC.

■ COM-H setting

Set COM-H in requirement of the following.

[DeviceNet communication requirement]

- Node address: 1
- DeviceNet communication speed: 125 kbps
- Connection controller model: SR Mini HG
- Communication mode: Communication model A (Compatible mode) or Communication model B (Expansion mode)

[SR Mini HG communication requirement]

- SR Mini HG communication speed: 9600 bps
- SR Mini HG data bit configuration: Data 8 bits, Without parity, Stop 1 bit
 - For setting method, refer to **5.1 DeviceNet Setting (P. 41)**, **5.2 Connection Controller and Communication Mode Setting (P.43)** and **5.3 Controller Communication Setting (P. 46)**.

SR Mini HG setting

Set SR Mini HG in requirement of the following.

[SR Mini HG communication requirement]

- SR Mini HG address: 0
- SR Mini HG communication speed: 9600 bps
- SR Mini HG data bit configuration: Data 8 bits, Without parity, Stop 1 bit
 - For setting method, refer to **5.3 Controller Communication Setting (P. 46)** and **SR Mini HG Communication Instruction Manual (IMSRM09-E**]).

7.4 Communication Items Setting

Set the communication items of the following as example.

ID Contents	Identification code	Communication items
1 Data01 ID	19761 (0x4D31)	Temperature input measured value
2 Data02 ID	20273 (0x4F31)	Heat-side manipulated output value
3 Data03 ID	14649 (0x3939)	Instrument status
4 Data04 ID	18225 (0x4731)	PID/AT transfer
5 Data05 ID	21297 (0x5331)	Temperature set value (SV)
6 Data06 ID	20529 (0x5031)	Heat-side proportional band
7 Data07 ID	18737 (0x4931)	Integral time
8 Data08 ID	17457 (0x4431)	Derivative time
9 Data09 ID	21552 (0x5430)	Heat-side proportioning cycle time
10 Data10 ID	20546 (0x5042)	PV bias
11 Data11 ID	16689 (0x4131)	Alarm 1 set value
12 Data12 ID	16690 (0x4132)	Alarm 2 set value
13 Data13 ID	16691 (0x4133)	Heater break alarm set value 1
14 Data14 ID	16692 (0x4134)	Heater break alarm set value 2
15 Data15 ID	21330 (0x5352)	Control RUN/STOP
16 Data16 ID	17737 (0x4549)	Operation mode transfer
17 Data17 ID	17217 (0x4341)	Control response parameter
18 Data18 ID	18776 (0x494E)	Initialize setting mode
19 Data19 ID	22601 (0x5849)	Input range
20 Data20 ID	22597 (0x5845)	Direct/Reverse action selection
21 Data21 ID	23110 (0x5A46)	CT channel setting
22 Data22 ID	20530 (0x5032)	Cool-side proportional band
23 Data23 ID	21553 (0x5431)	Cool-side proportioning cycle time
24 Data24 ID	20274 (0x4F32)	Cool-side manipulated output value
25 Data25 ID	22065 (0x5631)	Overlap/Deadband
26 Data26 ID	19765 (0x4D35)	AI measured value
27 Data27 ID	16708 (0x4144)	Analog input (AI) alarm 1 status
28 Data28 ID	16709 (0x4145)	Analog input (AI) alarm 2 status
29 Data29 ID	16693 (0x4135)	Analog input (AI) alarm 1 set value
30 Data30 ID	16694 (0x4136)	Analog input (AI) alarm 2 set value

• Setting items

ID Contents	Identification code *	Communication items
51 SV1 ID No.	5	Temperature set value (SV)
52 SV2 ID No.	11	Alarm 1 set value
53 SV3 ID No.	12	Alarm 2 set value
54 SV4 ID No.	0	

* Set the relevant ID No. from among IDs 1 to 30.

• Measured items

ID	Contents	Identification code *	Communication items
61	PV1 ID No.	1	Temperature input measured value
62	PV2 ID No.	5	Temperature set value (SV)
63	PV3 ID No.	11	Alarm 1 set value
64	PV4 ID No.	12	Alarm 2 set value

* Set the relevant ID No. from among IDs 1 to 30.

• Controller status

ID Contents	Identification code	Communication items
70 Status bit 0	12336 (0x3030) *	
71 Status bit 1	12336 (0x3030) *	
72 Status bit 2	16708 (0x4144)	Analog input (AI) alarm 1 status
73 Status bit 3	16709 (0x4145)	Analog input (AI) alarm 2 status
74 Status bit 4	16705 (0x4141)	Alarm 1 status
75 Status bit 5	16706 (0x4142)	Alarm 2 status
76 Status bit 6	16945 (0x4231)	Burnout status
77 Status bit 7	16707 (0x4143)	Heater break alarm status

* Identification code is "12336 (0x3030)" when it does not designate communication item.

• Number of maximum connection channel

ID Contents	Identification code	Communication items
80 Maximum temperature channel	02	2 channels

For details, refer to the **6.2.1 Controller communication items setting** (**P. 50**).

7.5 Sample Programs

7.5.1 Polling I/O communication (When the SYSMAC CS1)

Polling I/O communication is called "Remote I/O communication" in OMRON PLC related instruction manuals.

Communication requirement

The data type (temperature input data), channel number (1 or 2) and set value are sent from the SYSMAC CS1, and temperature input measured values corresponding to temperature control channels 1 and 2 are read from the COM-H.

Communication mode setting

• Communication mode A (Compatible mode)

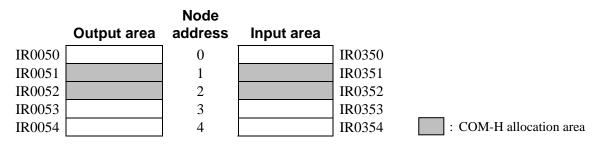
• Data to send from a PLC

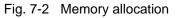
- Temperature control channel 1 set value: 100
- Temperature control channel 2 set value: 100
- Storage location of read data
- Temperature control channel 1 measured value: D00001
- Temperature control channel 2 measured value: D00002

Memory allocation

Default allocations (without Configuration)

• SYSMAC CS1 I/O allocation


Output area: IR0050 to IR0099


Input area: IR0350 to IR0399

• COM-H (Node address 1) I/O allocation

Output area: IR0051, IR0052

Input area: IR0351, IR0352

[COM-H I/O allocation]

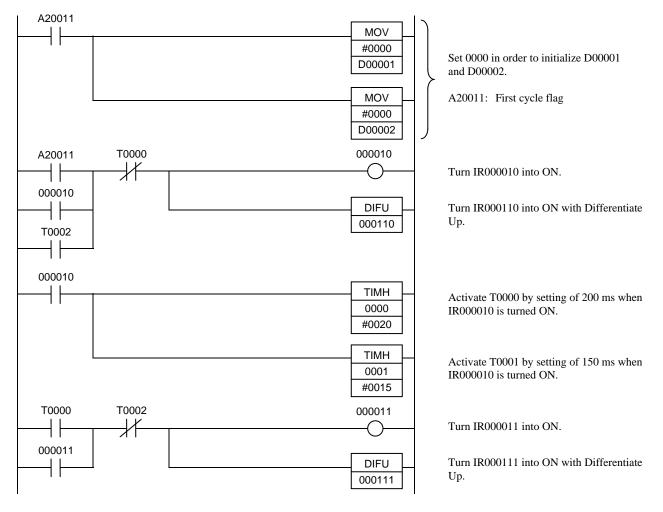
Can confirm an COM-H I/O allocation area with **APPENDIX A. Device Profiles**/Connection Object (0x05)/Object instance 2/Attribute 7: Produced connection size and Attribute 8: Consumed connection size.

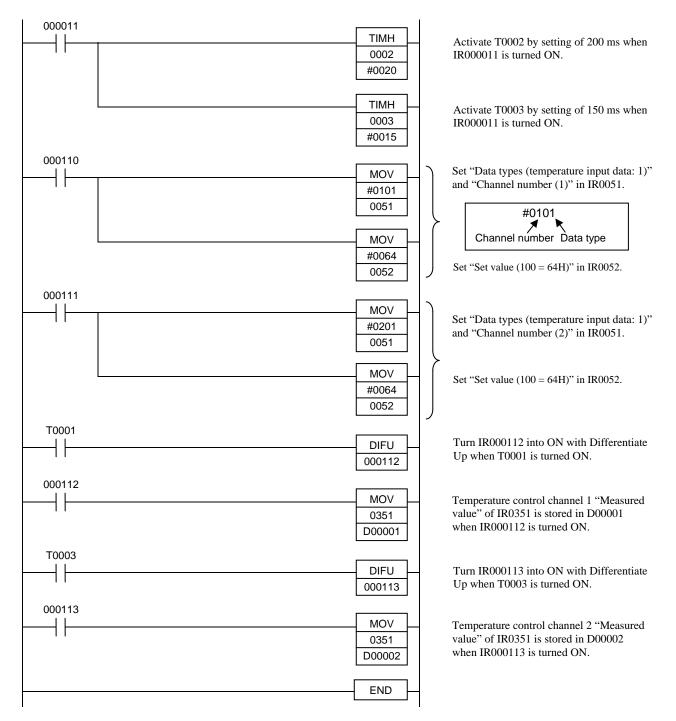
- Produced connection size: This is the amount of memory (usually in bytes) allocated as input.
- Consumed connection size: This is the amount of memory (usually in bytes) allocated as output. If the connection size is an even number of bytes: bytes/2 = The number of allocated words If the connection size is an odd number of bytes: (bytes + 1)/2 = The number of allocated words COM-H
- Produced connection size: $4 \rightarrow$ The number of allocated words of input area: 2
- Consumed connection size: 4 \rightarrow The number of allocated words of output area: 2

■ Sample program (ladder)

Program action

- 1. Read the measured value of temperature control channel 1
 - When the relay No. 000110 is ON:


"Data types (temperature input data)" and "Channel number (1)" are set to IR0051. Set value of set data in IR0051 is set to IR0052.


- Measured value of temperature control channel 1 is written in IR0351.
- Measured value of IR0351 is stored to D00001 when IR000112 is ON.
- 2. Read the measured value of temperature control channel 2
 - When the relay No. 000111 is ON:

"Data types (temperature input data)" and "Channel number (2)" are set to IR0051. Set value of set data in 0051CH is set to IR0052.

- Measured value of temperature control channel 2 is written in IR0351.
- Measured value of IR0351 is stored to D00002 when IR000113 is ON.

As IR0051, IR0052 and IR0351 are shared by temperature control channels 1 and 2, the timing is staggered by timers.

7.5.2 Polling I/O communication (When the Control Logix 5550)

Communication requirement

The data type (temperature input data), channel number (1 or 2) and set value are sent from the "Rockwell (Allen-Bradley) Control Logix 5550," and temperature input measured values corresponding to temperature control channels 1 and 2 are read from the "COM-H."

• Communication mode setting

• Communication mode B (Expansion mode)

• Data to send from a PLC

Send the following three items sequentially.

- Temperature set value (Data type = 1: ID5)
- Alarm 1 set value (Data type = 2: ID11)
- Alarm 2 set value (Data type = 3: ID12)

• Data to send from a COM-H

- Temperature input measured value (ID1)
- Temperature set value (ID5)
- Alarm 1 set value (ID11)
- Alarm 2 set value (ID12)
- Controller status

In case of the temperature controller, set value does poling as monitor data.

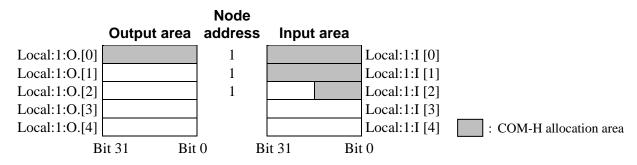
• Program action

As action of sequence program, there are monitor mode and setting mode. Execute the mode transfer with display unit connected to PLC.

<Monitor mode>

In case of monitor mode, set value does not send from PLC when set data type in "0." Only read of the measured value from the controller.

- Storage location of read data (Variable)
 - Temperature control channel 1 measured value: N20[1]
 - Temperature control channel 2 measured value: N20[2]
 - Temperature control channel 1 set value: N20[11]
 - Temperature control channel 2 set value: N20[12]
 - Temperature control channel 1 alarm 1 set value: N20[21]
 - Temperature control channel 2 alarm 1 set value: N20[22]
 - Temperature control channel 1 alarm 2 set value: N20[31]
 - Temperature control channel 2 alarm 2 set value: N20[32]
 - Temperature control channel 1 status: N20[41]
 - Temperature control channel 2 status: N20[42]


<Setting mode>

Send set value of the PLC internal register set by display unit.

- Storage location of write data (Variable)
 - Temperature control channel 1 set value: N24[1]
 - Temperature control channel 2 set value: N24[2]
 - Temperature control channel 1 alarm 1 set value: N24[11]
 - Temperature control channel 2 alarm 1 set value: N24[12]
 - Temperature control channel 1 alarm 2 set value: N24[21]
 - Temperature control channel 2 alarm 2 set value: N24[22]

Memory allocation

Do the memory allocations of PLC as the following.

Sample program (ladder)

Program area

S = Special relay

T4 = Timer

N20 = Internal register (Register for storage of read data)

N23 = Internal register (Register for work)

N24 = Internal register (Register for storage of writ data)

DevWr = Internal register (Register for send data)

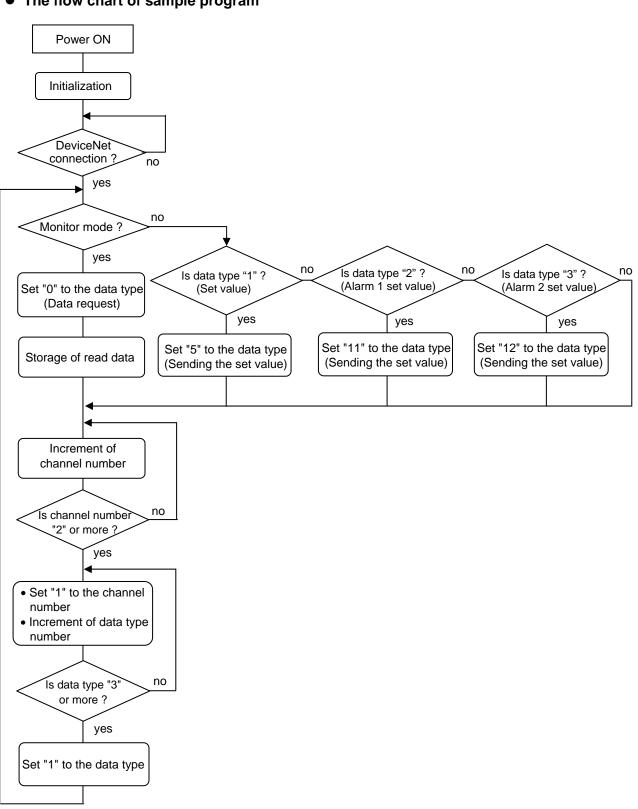
B10 = Internal relay

Local:1:O = OUT area (Area for DeviceNet polling I/O)

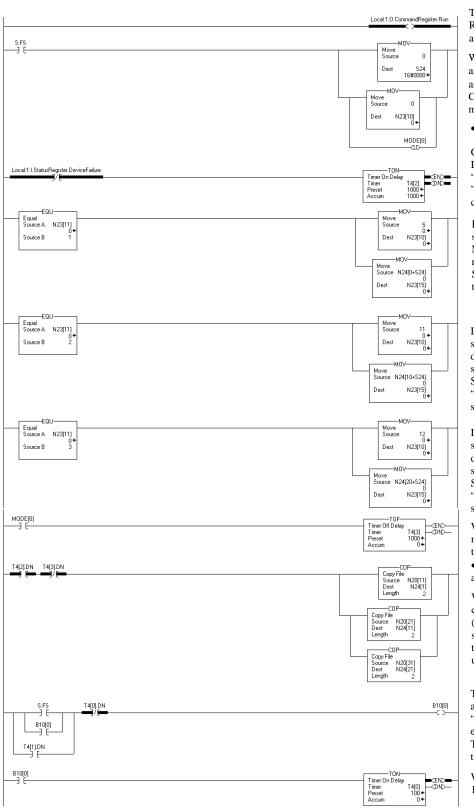
Local:1:I = IN area (Area for DeviceNet polling I/O)

Program action

- 1. When data read of the temperature control channel 1
 - With monitor mode (MODE[0]=OFF) in case of internal relay (B10[0]) ON


Sets "data type: 0" and "channel number: 1" to "Local:1:O.Data[0]."

Data of temperature control channel 1 is written in at I/O area.


Local:1:I.Data[0]: low-order data: Measured value High-order data: Set value Local:1:I.Data[1]: low-order data: Alarm 1 set value High-order data: Alarm 2 set value Local:1:I.Data[2]: low-order data: Instrument status

- With time-up of "T4[0]," saved data of "Local:1:I.Data [0 to 2]" in each storage areas.
- 2. When writes in set value of the temperature control channel 2
 - With setting mode (MODE[0]=ON) in case of internal relay (B10[0]) ON Sets "data type: 5," "channel number: 2" and set value to "Local:1:O.Data[0]."

As "Local:1:O" and "Local:1:I" are shared by temperature control channels 1 and 2, the timing is staggered by timers.

• The flow chart of sample program

Turns "Local:1:O.Comand Register .Run" of OUT area into ON, and starts DeviceNet.

Writes in "0" at "S24" (chNo.) and "N23[10]]" (data type) at start-up, and initializes it.

Clears mode, and changes it into monitor mode.

• S:FS = Is ON only one-scan at start-up.

Confirm that slave was connected to DeviceNet with

"Local:1:I.StatusRegister.DeviceFailure. " Start I/O polling processing from the connection one second later.

If "N24[11]" (data type No.) is set to "1," set "5" which is the set value data type ID No. to "N24[10]" (data type setting register).

Set the set value stored in "N24[chNo.]" to "N23[15]" (set value setting register).

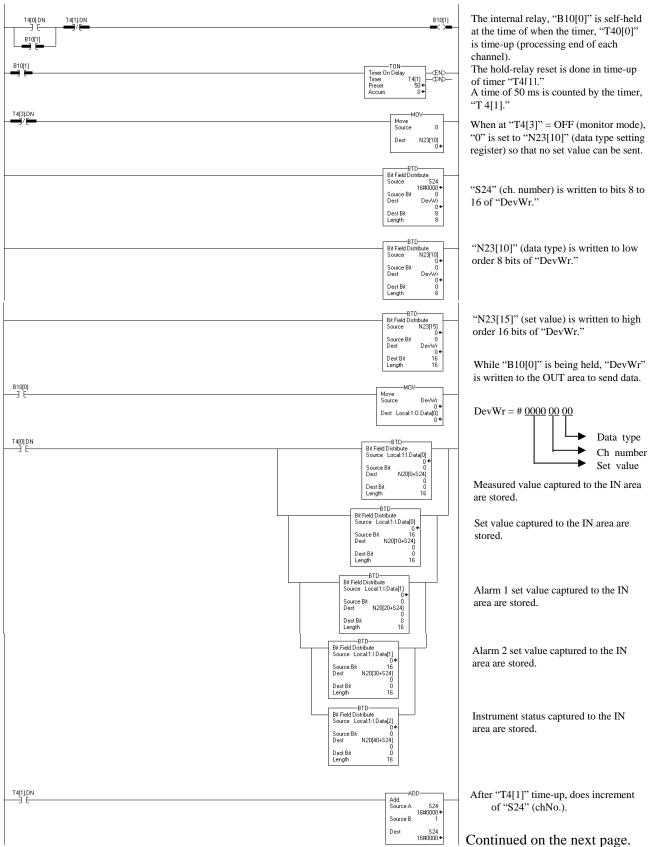
If "N24[11]" (data type No.) is set to "2," set "11" which is the alarm 1 set value data type ID No. to "N24[10]" (data type setting register).

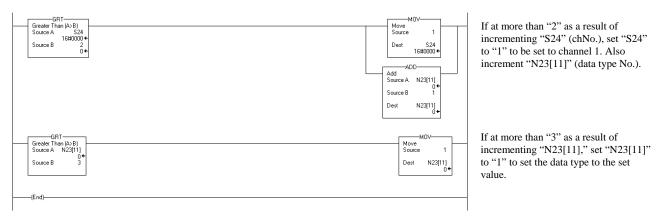
Set the alarm 1 set value stored in "N24[chNo.]" to "N23[15]" (set value setting register).

If "N24[11]" (data type No.) is set to "3," set "12" which is the alarm 1 set value data type ID No. to "N24[10]" (data type setting register).

Set the alarm 2 set value stored in "N24[chNo.]" to "N23[15]" (set value setting register).

When changing the set mode to the monitor mode, set the one-second-delay timer.


• It takes about one second to transmit all the set value of tow channel.


When at "T4:[2]" = ON (DeviceNet connection) and "T4:[3]" = OFF (monitor mode), the set value, alarm 1 set value and alarm 2 set value read from the slave are copied to the storage area used for data write.

The internal relay, "B10[0]" is self-held at the time of start-up or when the timer, "T40[0]" is time-up (processing end of each channel).

The hold-relay reset is done in time-up of timer "T4[0]."

While "B10[0]" is being held, a time of 100 ms is counted by the timer, "T4[0]."

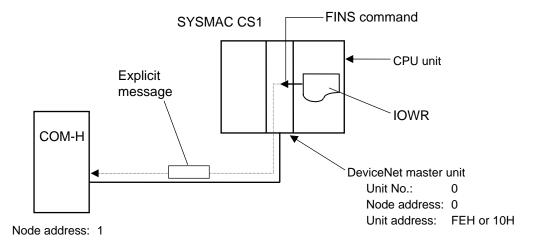
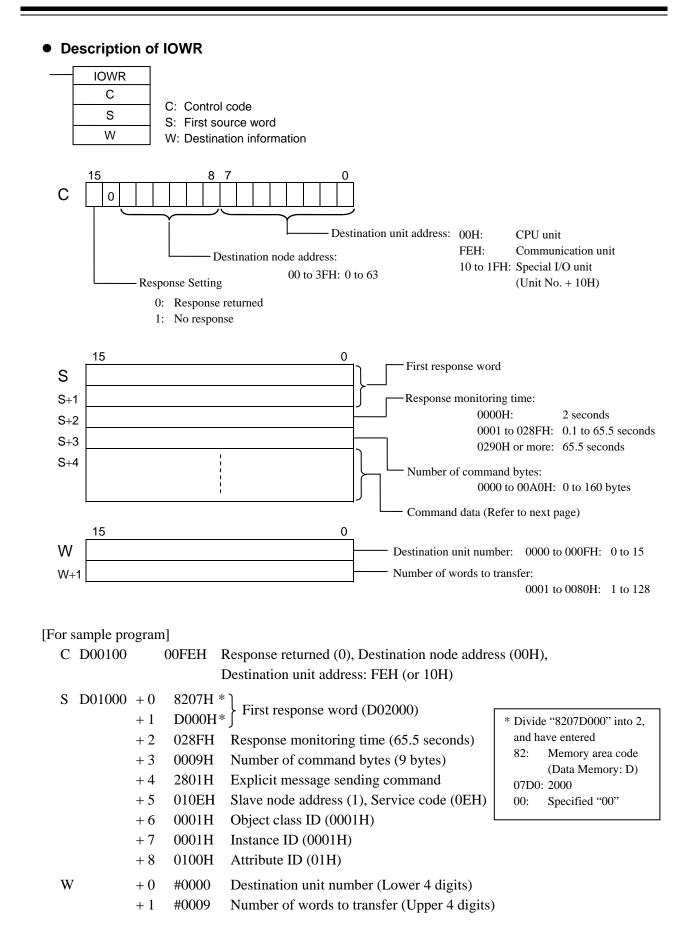
7.5.3 Explicit message communication

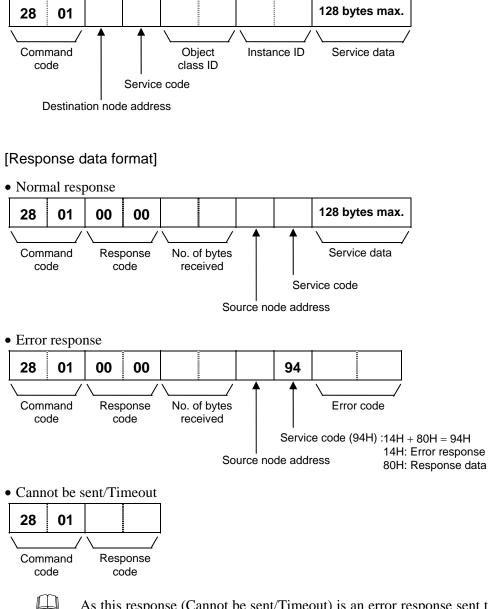
In order to conduct Explicit message communication using the OMRON SYSMAC CS1 PLC, the FINS command for FINS communication (communication protocol developed by OMRON) is used.

Communication requirement

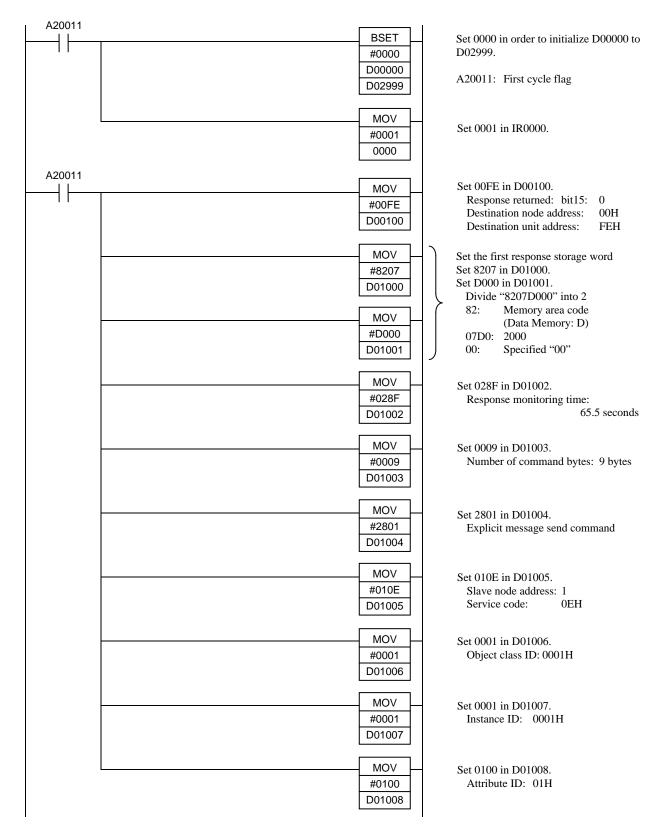
The vendor code is read from the COM-H (slave). (RKC vendor code: 394 = 018AH)

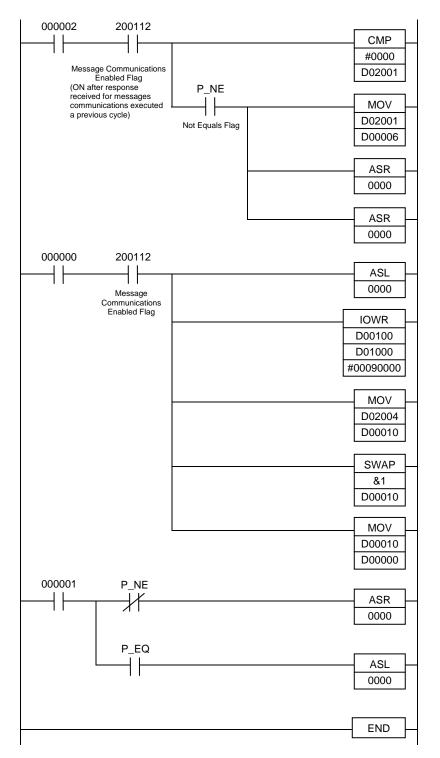
- Using the "Explicit message send" command (2801) of FINS command.
- The "IOWR instruction" is used to send FINS commands.
- IOWR instruction is executed when "Message Communications Enabled Flag" is turned ON.
- Write location of request data from master: On and after D01000
- Storage location of response data from slave: On and after D02000
- The completion code is stored in D00006 when execution of IOWR has been completed and then the command is executed again.
- When an Explicit message is sent by the SYSMAC CS1, the send location of the FINS command is assigned to the DeviceNet master unit of its own node instead of the actual send location (COM-H). The COM-H node address is specified within Explicit message send command data.


Fig. 7-2 Explicit message flow

• Command data format


Command data format at communicating by an Explicit message with SYSMAC CS1 is shown with the following.


[Request data format from master]

As this response (Cannot be sent/Timeout) is an error response sent to the CPU unit from the DeviceNet master unit of the SYSMAC CS1, this is not an error in DeviceNet communication.

■ Sample program (ladder)

Compares contents of D02001 to 0000 after IOWR execution and response reception have been completed the previous cycle.

Places the contents of D02001 into D00006 if the comparison results is not equals (error).

Shifts the contents of IR0000 one bit right to turn ON IR000001.

Shifts the contents of IR0000 one bit right to turn ON (reset) IR000000.

Shifts the contents of IR0000 one bit to the left to turn ON IR000001.

Transfers the 9 words of command data starting from D01000 at the CPU Unit to the DeviceNet Master Unit (unit number 0).

Transfer contents of D02004 (response data from slave: vendor ID) to D00010.

As the high-order and low-order bytes of data thus written are reversed, replace the high-order byte with the low-order byte.

Transfer contents of D00010 to D00000.

If the write for IOWR has been completed, IR0000 is shifted one bit to the right to turn ON (reset) IR000000.

If the write for IOWR has not been completed, IR0000 is shifted one bit to the left to turn ON IR000002.

8. TROUBLESHOOTING

This section explains possible causes and treatment procedures if any abnormality occurs in the instrument. For any inquiries, please contact RKC sales office or the agent, to confirm the specifications of the product.

If it is necessary to replace a device, always strictly observe the warnings below.

- To prevent electric shock or instrument failure, always turn off the system power before replacing the instrument.
- To prevent electric shock or instrument failure, always turn off the power before mounting or removing the instrument.
- To prevent electric shock or instrument failure, do not turn on the power until all wiring is completed. Make sure that the wiring is correct before applying power to the instrument.
- To prevent electric shock or instrument failure, do not touch the inside of the instrument.
- All wiring must be performed by authorized personnel with electrical experience in this type of work.

CAUTION

All wiring must be completed before power is turned on to prevent electric shock, instrument failure, or incorrect action.

Problem	Possible cause	Solution
No response (DeviceNet)	Wrong connection, no connection or disconnection of the DeviceNet communication cable	Confirm the connection method or condition and connect correctly
	Breakage, wrong wiring, or imperfect contact of the DeviceNet communication cable	Confirm the wiring or connector and repair or replace the wrong one
	Communication speed setting of COM-H and RKC controllers is mismatch	Confirm the communication speed setting and set that correctly
	Wrong node address setting	Confirm the address setting and set that correctly
	Wrong RKC controllers address setting	Sets following value to RKC controllers address - SR Mini HG: 0 - Others: Sets in order from 1

Problem	Possible cause	Solution
NS lamp OFFMS lamp ON (Green)	Wait for completion of node address duplication check with a master	If only the COM-H is in this state though both of the NS/MS lamps are lit in green, re-start after checking that each communication speed is the same
NS lamp OFFMS lamp ON (Red)	Watchdog timer error	Replace COM-H
NS lamp ON (Red)MS lamp ON (Green)	Node address duplication	Re-start after the re-setting is made so that no node address is duplicated
	Bus off status (communication stop by data abnormality frequent occurrence)	 Re-start after checking the following items. Does the speed coincide with the master communication speed ? Is not the DeviceNet communication cable connected yet, incorrectly connected or removed ? Is the length of the DeviceNet communication cable appropriate ? Are termination resistors (121 Ω) connected only to both ends of the trunk line ? Does much noise exist ?
	Breakdown of communication device	Replace COM-H
 NS lamp Flashing (Red) MS lamp ON (Green) 	DeviceNet communication timeout status	 Re-start after checking the following items. Does the speed coincide with the master communication speed ? Is not the DeviceNet communication cable connected yet, incorrectly connected or removed ? Is the length of the DeviceNet communication cable appropriate ? Are termination resistors (121 Ω) connected only to both ends of the trunk line ? Does much noise exist ?

Problem	Possible cause	Solution		
RX (data reception) lamp does not flash	Wrong connection, no connection or disconnection of the controller communication cable	Confirm the connection method or condition and connect correctly		
TX (data transmission) lamp does not flash	Breakage, wrong wiring, or imperfect contact of the controller communication cable	Confirm the wiring or connector and repair or replace the wrong one		
	CPU section defect	Replace COM-H		
	Power not being supplied	Check the power supply voltage and cable		

A. Device Profiles

A device profile is the specification that defined each necessary parameter with DeviceNet. Use it after understanding contents of a device profile of COM-H fully when connected to a master.

A.1 Basic data

General device data

Conforms to DeviceNet specification	Volume I -Release 2.0 Volume II -Release 2.0
Vender name	RKC INSTRUMENT INC. (Vender ID = 394)
Device profile name	Generic Device
Product catalog number	Instruction manual number: IMR01L01-E□ (English) IMR01L01-J□ (Japanese)
Product revision	3.1

Physical conformance data

Network power consumption	50 mA @ 11 V DC 40 mA @ 24 V DC
Connector type	Open-style connector or Micro-style connector
Insulated physical layer	Provided
LEDs supported	Module, Network
MAC ID setting	Rotary switch (Node address setting)
Default MAC ID	63
Communication speed setting	Rotary switch
Communication speed supported	125 kbps, 250 kbps, 500 kbps

Communication data

Predefined master/slave connection set	Group 2 Only server
Dynamic connection supported (UCMM)	Not supported
Fragmented Explicit Messaging	None

A.2 Object mounting

■ Identity Object (0x01: 01Hex)

• Object class

Attributes	Not supported
Services	Not supported

• Object instance

	ID	Description	Get	Set	Туре	Value
Attributes	1	Vender	Yes	No	UINT	394
	2	Product type	Yes	No	UINT	0
	3	Product code	Yes	No	UINT	1
	4	Revision	Yes	No		
		Major revision			USINT	3
		Minor revision			USINT	1
	5	Status (bits supported)	Yes	No	WORD	Note 1
	6	Serial number	Yes	No	UDINT	Note 2
	7	Product name	Yes	No		
		Length			USINT	5
		Name			STRING	СОМ-Н
	De	viceNet service	Para	mete	r option	
Services	0x0	5 Reset	0			
	0x0	E Get_Attribute_Single	None	;		

Note 1: A bit layout of "Status"

Bit 0: Owned

Bit 7: Become 1 when communication with a controller became abnormal and when the either bit of "Controller status" became 1.

Bit 1 to 6 and Bit 8 to 15: Unused

Note 2: An individual number of every COM-H

■ Message Router Object (0x02: 02Hex)

• Object class

Attributes	Not supported
Services	Not supported

• Object instance

Attributes	Not supported
Services	Not supported

■ DeviceNet Object (0x03: 03Hex)

• Object class

	ID Descri	ption	Get	Set	Туре	Value
Attributes	1 Revisio	n	Yes	No	UINT	2
	DeviceNet	service	Para	mete	r option	
Services	0x0E Get_A	Attribute_Single	None			

• Object instance

	ID	Description	Get	Set	Туре	Value
Attributes	1	MAC ID	Yes	No	USINT	0 to 63
	2	Baud rate	Yes	No	USINT	0 to 2
	3	BOI	Yes	No	BOOL	0
	4	Bus-off counter	Yes	Yes	USINT	
	5	Allocation information Allocation choice byte Master's MAC ID	Yes	No	BYTE USINT	
	6	MAC ID switch changed	Yes	No	BOOL	0, 1
	7	Baud rate switch changed	Yes	No	BOOL	0, 1
	8	MAC ID switch value	Yes	No	USINT	0 to 63
	9	Baud rate switch value	Yes	No	USINT	0 to 2
	Dev	viceNet service	Para	mete	r option	
Services	0x0	E Get_Attribute_Single	None	;		
	0x1	0 Set_Attribute_Single	None	;		
	0x4	B Allocate_Master/Slave_ Connection_Set	None	;		
	0x4	C Release_Group_2_ Identifier_Set	None	;		

■ Assembly Object (0x04: 04Hex)

[Communication mode A]

Object class

	ID Description	Get Set Type Value	
Attributes	1 Revision	Yes No UINT 2	
	DeviceNet service	Parameter option	
Services	0x0E Get_Attribute_Single	None	

• Object instance 100

	ID	Description	Get	Set	Туре	Value
Attributes	3	Data	Yes	No		
		Measured value			INT	Note 1
		Controller status			WORD	Note 2
	Dev	viceNet service	Para	mete	r option	
Services	0x0	E Get_Attribute_Single	None			

Note 1: Data item values set to ID61 to 64 from among data items set to controller communication item setting object (0xC7)/object instance 1 ID1 to 30 are read.

Note 2: Data item values set to controller communication item setting object (0xC7)/object instance 1 ID70 to 77 are read.

• Object instance 101

	ID	Description	Get	Set	Туре	Value
Attributes	3	Data	No	Yes		
		Data types			USINT	1 to 4
		Channel number			USINT	1 to 24
		Set value			INT	Note 1
	De	viceNet service	Para	mete	r option	
Services	0x1	0 Set_Attribute_Single	None	2		

Note 1: One type of data item value selected by "data type" from among data items set to controller communication item setting object (0xC7)/object instance 1 ID51 to 54 are written.

[Communication mode B]

• Object class

	ID Description	Get Set Type Val
Attributes	1 Revision	Yes No UINT 2
	DeviceNet service	Parameter option
Services	0x0E Get_Attribute_Single	None

• Object instance 100

	ID	Description	Get	Set	Туре	Value
Attributes	3	Data	Yes	No		
		Measured value 1			INT	Note 1
		Measured value 2			INT	
		Measured value 3			INT	
		Measured value 4			INT	
		Controller status			WORD	Note 2
	De	viceNet service	Para	mete	r option	
Services	0x0	E Get_Attribute_Single	None	;		

Note 1: Data item values set to ID61 to 64 from among data items set to controller communication item setting object (0xC7)/object instance 1 ID1 to 30 are read.

Note 2: Data item values set to controller communication item setting object (0xC7)/object instance 1 ID70 to 77 are read.

• Object instance 101

	ID Description	Get	Set	Туре	Value
Attributes	3 Data	No	Yes		
	Data types			USINT	1 to 30
	Channel numb	ber		USINT	1 to 24
	Set value			INT	Note 1
	DeviceNet service	e Para	mete	r option	
Services	0x10 Set_Attribute_	_Single None			

Note 1: One type of data item value selected by "data type" from among data items set to controller communication item setting object (0xC7)/object instance 1 ID1 to 30 are written.

■ Connection Object (0x05: 05Hex)

• Object class

Attributes	Not supported
Services	Not supported
Number of maximum possible active	1
connection	

• Object instance 1

	Section	Information	Number of maximum instance	
	Instance type	Explicit Message	1	
	Production trigger	Cyclic		
	Transport type	Server		
	Transport class	3		
	ID Description	Get Set Type	Value	
Attributes	1 State	Yes No USINT		
	2 Instance type	Yes No USINT	0x00	
	3 Transport class trigger	Yes No BYTE	0x83	
	4 Produced connection ID	Yes No UINT		
	5 Consumed connection ID	Yes No UINT		
	6 Initial comm. Characteristic	s Yes No BYTE	0x21	
	7 Produced connection size	Yes No UINT	7	
	8 Consumed connection size	Yes No UINT	7	
	9 Expected packet rate	Yes Yes UINT	Default: 2500	
	12 Watchdog time-out action	Yes Yes USINT	1, 3	
	13 Produced connection path length	Yes No UINT	0	
	14 Produced connection path	Yes No (null)		
	15 Consumed connection path length	Yes No UINT	0	
	16 Consumed connection path	Yes No (null)		
	DeviceNet service	Parameter option		
Services	0x05 Reset	None		
	0x0E Get_Attribute_Single	None		

None

0x10 Set_Attribute_Single

• Object instance 2

	See	ction	Infor	matic	on	Number of maximum instance
	Inst	ance type	Polle	d I/O		1
	Pro	duction trigger	Cycli	c		
	Tra	nsport type	Serve	er		
	Tra	nsport class	2			
	ID	Description	Get	Set	Туре	Value
Attribute	1	State	Yes	No	USINT	
	2	Instance type	Yes	No	USINT	0x01
	3	Transport class trigger	Yes	No	BYTE	0x82
	4	Produced connection ID	Yes	No	UINT	
	5	Consumed connection ID	Yes	No	UINT	
	6	Initial comm. Characteristics	Yes	No	BYTE	0x01
	7	Produced connection size	Yes	No	UINT	Note 1
	8	Consumed connection size	Yes	No	UINT	4
	9	Expected packet rate	Yes	Yes	UINT	Default: 0
	12	Watchdog time-out action	Yes	No	USINT	0
	13	Produced connection path length	Yes	No	UINT	6
	14	Produced connection path	Yes	No		
		Logic Segment, Class			USINT	0x20
		Class Number			USINT	0x04
		Logic Segment, Instance			USINT	0x24
		Instance Number			USINT	0x64
		Logic Segment, Attributes			USINT	0x30
		Attributes Number			USINT	0x03
	15	Consumed connection path length	Yes	No	UINT	6
	16	Consumed connection path	Yes	No		
		Logic Segment, Class			USINT	0x20
		Class Number			USINT	0x04
		Logic Segment, Instance			USINT	0x24
		Instance Number			USINT USINT	0x65 0x30
		Logic Segment, Attributes Attributes Number			USINT	0x03
	Dev	viceNet service	Para	mete	r option	
Services	0x0	95 Reset	None			
	0x0	E Get_Attribute_Single	None			
		0 Set_Attribute_Single	None			

Note 1: Communication mode A: 4, Communication mode B: 10

■ Temperature Controller Object (0x64: 64Hex)

• Object class

Attributes	Not supported	
Services	Not supported	

• Object instance ((: 1 to 24)

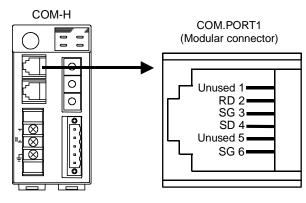
	ID	Description	Get	Set	Туре
Attributes	1	Data 1	Yes	Yes	INT
	2	Data 2	Yes	Yes	INT
	3	Data 3	Yes	Yes	INT
	4	Data 4	Yes	Yes	INT
	5	Data 5	Yes	Yes	INT
	6	Data 6	Yes	Yes	INT
	7	Data 7	Yes	Yes	INT
	8	Data 8	Yes	Yes	INT
	9	Data 9	Yes	Yes	INT
	10	Data 10	Yes	Yes	INT
	11	Data 11	Yes	Yes	INT
	12	Data 12	Yes	Yes	INT
	13	Data 13	Yes	Yes	INT
	14	Data 14	Yes	Yes	INT
	15	Data 15	Yes	Yes	INT
	16	Data 16	Yes	Yes	INT
	17	Data 17	Yes	Yes	INT
	18	Data 18	Yes	Yes	INT
	19	Data 19	Yes	Yes	INT
	20	Data 20	Yes	Yes	INT
	21	Data 21	Yes	Yes	INT
	22	Data 22	Yes	Yes	INT
	23	Data 23	Yes	Yes	INT
	24	Data 24	Yes	Yes	INT
	25	Data 25	Yes	Yes	INT
	26	Data 26	Yes	Yes	INT
	27	Data 27	Yes	Yes	INT
	28	Data 28	Yes	Yes	INT
		Data 29	Yes		INT
		Data 30	Yes		INT
	Dev	viceNet service	Para	mete	r option
Services	0x0	E Get_Attribute_Single	None		
	0x1	0 Set_Attribute_Single	None		

■ Controller Communication Item Setting Object (0xC7: C7Hex)

• Object class

-		
Attributes	Not supported	
Services	Not supported	

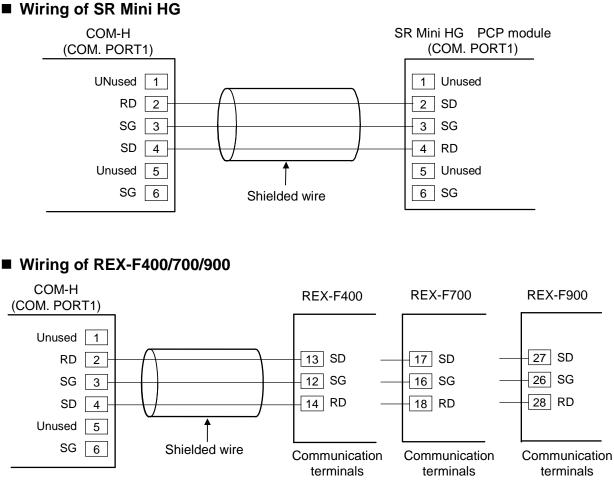
Object instance 1

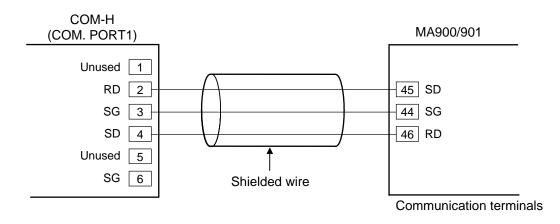

	ID	Description	Get	Set	Туре	Value (Default)
Attributes	1	Data 1 ID	Yes	Yes	UINT	19761 = 0x4D31 (M1)
	2	Data 2 ID	Yes	Yes	UINT	20273 = 0x4F31 (O1)
	3	Data 3 ID	Yes	Yes	UINT	14649 = 0x3939 (99)
	4	Data 4 ID	Yes	Yes	UINT	18225 = 0x4731 (G1)
	5	Data 5 ID	Yes	Yes	UINT	21297 = 0x5331 (S1)
	6	Data 6 ID	Yes	Yes	UINT	20529 = 0x5031 (P1)
	7	Data 7 ID	Yes	Yes	UINT	18737 = 0x4931 (I1)
	8	Data 8 ID	Yes	Yes	UINT	17457 = 0x4431 (D1)
	9	Data 9 ID	Yes	Yes	UINT	21552 = 0x5430 (T0)
	10	Data 10 ID	Yes	Yes	UINT	20546 = 0x5042 (PB)
	11	Data 11 ID	Yes	Yes	UINT	16689 = 0x4131 (A1)
	12	Data 12 ID	Yes	Yes	UINT	16690 = 0x4132 (A2)
	13	Data 13 ID	Yes	Yes	UINT	16691 = 0x4133 (A3)
	14	Data 14 ID	Yes	Yes	UINT	16692 = 0x4134 (A4)
	15	Data 15 ID	Yes	Yes	UINT	21330 = 0x5352 (SR)
	16	Data 16 ID	Yes	Yes	UINT	17737 = 0x4549 (EI)
	17	Data 17 ID	Yes	Yes	UINT	17217 = 0x4341 (CA)
	18	Data 18 ID	Yes	Yes	UINT	18766 = 0x494E (IN)
	19	Data 19 ID	Yes	Yes	UINT	22601 = 0x5849 (XI)
	20	Data 20 ID	Yes	Yes	UINT	22597 = 0x5845 (XE)
	21	Data 21 ID	Yes	Yes	UINT	23110 = 0x5A46 (ZF)
	22	Data 22 ID	Yes	Yes	UINT	20530 = 0x5032 (P2)
	23	Data 23 ID	Yes	Yes	UINT	21553 = 0x5431 (T1)
	24	Data 24 ID	Yes	Yes	UINT	20274 = 0x4F32 (O2)
	25	Data 25 ID	Yes	Yes	UINT	22065 = 0x5631 (V1)
	26	Data 26 ID	Yes	Yes	UINT	19765 = 0x4D35 (M5)
	27	Data 27 ID	Yes	Yes	UINT	16708 = 0x4144 (AD)
	28	Data 28 ID	Yes	Yes	UINT	16709 = 0x4145 (AE)
	29	Data 29 ID	Yes	Yes	UINT	16693 = 0x4135 (A5)
	30	Data 30 ID	Yes	Yes	UINT	16694 = 0x4136 (A6)

	ID	Description	Get	Set	Туре	Value (Default)		
Attributes	51	I/O message	Yes	Yes	UINT	5 (1 to 30)		
		SV 1 ID number		••				
	52	I/O message	Yes	Yes	UINT	0 (1 to 30)		
	50	SV 2 ID number	V	V		0 (1 (- 20)		
	53	I/O message SV 3 ID number	Yes	Yes	UINT	0 (1 to 30)		
	54	I/O message	Yes	Yes	UINT	0 (1 to 30)		
		SV 4 ID number						
	61	I/O message	Yes	Yes	UINT	1 (1 to 30)		
		PV 1 ID number						
	62	I/O message	Yes	Yes	UINT	26 (1 to 30)		
		PV 2 ID number				· · ·		
	63	I/O message	Yes	Yes	UINT	0 (1 to 30)		
		PV 3 ID number						
	64	I/O message	Yes	Yes	UINT	0 (1 to 30)		
		PV 4 ID number						
	70	I/O message	Yes	Yes	UINT	12336 = 0x3030(00)		
		Controller status Bit 0				、 /		
	71	I/O message	Yes	Yes	UINT	12336 = 0x3030(00)		
		Controller status Bit 1						
	72	I/O message	Yes	Yes	UINT	16708 = 0x4144 (AD)		
		Controller status Bit 2						
	73	I/O message	Yes	Yes	UINT	16709 = 0x4145 (AE)		
		Controller status Bit 3						
	74	I/O message	Yes	Yes	UINT	16705 = 0x4141 (AA)		
		Controller status Bit 4						
	75	I/O message	Yes	Yes	UINT	16706 = 0x4142 (AB)		
	_	Controller status Bit 5						
	76	I/O message	Yes	Yes	UINT	16945 = 0x4231 (B1)		
		Controller status Bit 6	• 7	X 7				
	77	I/O message	Yes	Yes	UINT	16707 = 0x4143 (AC)		
		Controller status Bit 7						
	80	Number of maximum connection	Yes	Yes	UINT	20		
		channels						
	DeviceNet service		Para	Parameter option				
Services	0x0E Get_Attribute_Single		None	None				

B. Signal Description and Wiring Diagram of COM.PORT1

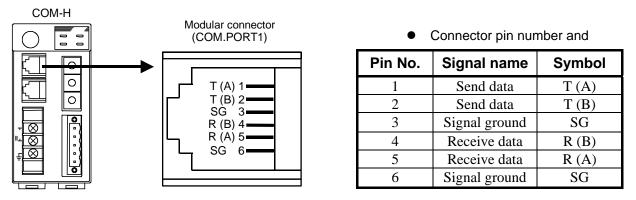
B.1 RS-232C


Pin layout of modular connector


• Connector pin number and signal details

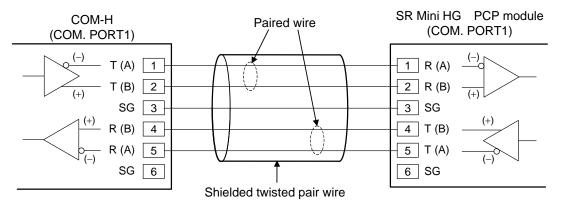
Pin No.	Signal name	Symbol
1	Unused	
2	Receive data	RD (RXD)
3	Signal ground	SG
4	Send data	SD (TXD)
5	Unused	
6	Signal ground	SG

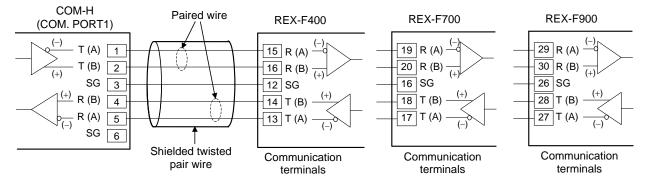
The 6-pin type modular connector should be used for the connection to the COM-H. Recommended model: TM4P-66P (Manufactured by HIROSE ELECTRIC CO., LTD.,)



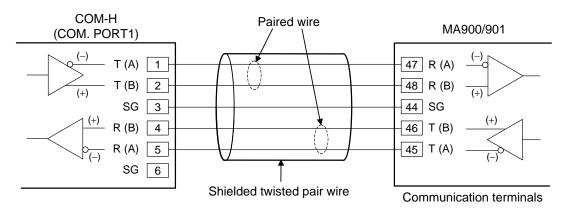
■ Wiring of MA900/901

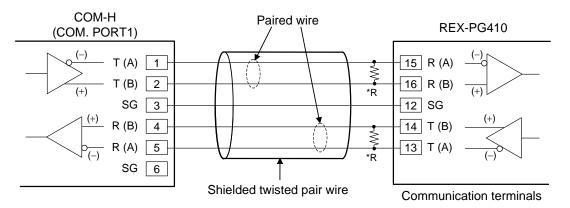
B.2 RS-422A


Pin layout of modular connector


The 6-pin type modular connector should be used for the connection to the COM-H. Recommended model: TM4P-66P (Manufactured by HIROSE ELECTRIC CO., LTD.,)

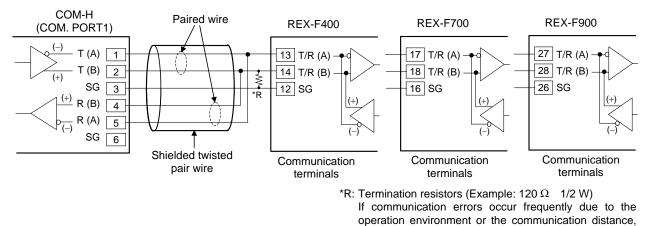
B.2.1 Connection to the RS-422A interface of the controllers


■ Wiring of SR Mini HG


Wiring of REX-F400/700/900

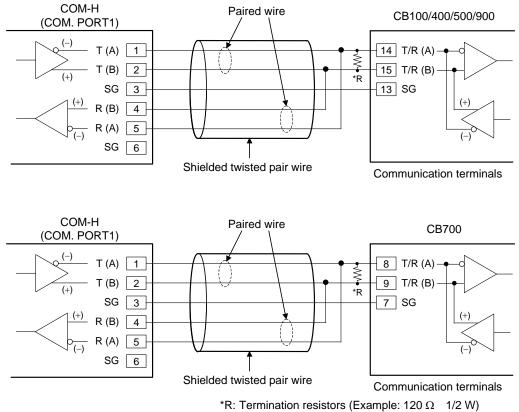
■ Wiring of MA900/901

■ Wiring of REX-PG410

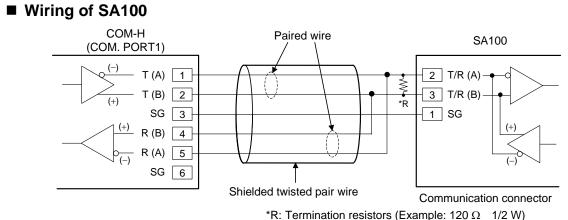


*R: Termination resistors (Example: $120 \Omega 1/2 W$) If communication errors occur frequently due to the operation environment or the communication distance, connect termination resistors.

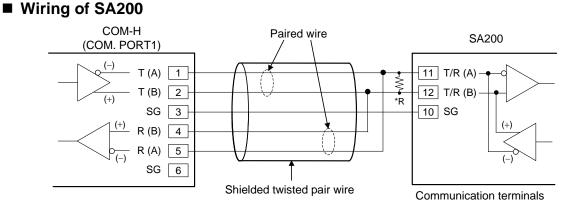
B.2.2 Connection to the RS-485 interface of the controllers


When connected to the RS-485 interface controller by using the RS-422A interface for COM-H control communication, connect T (A) and R (A) of the cable to the controller T/R (A) terminals and also T (B) and R (B) of the cable to the controller T/R (B) terminals, respectively.

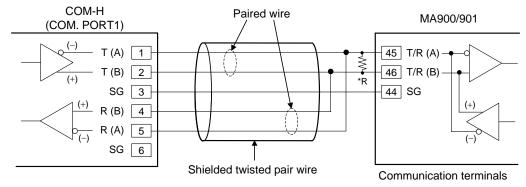
Wiring of REX-F400/700/900



connect termination resistors.

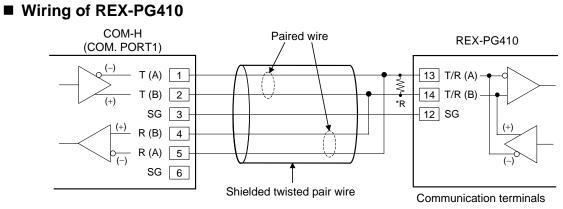

Wiring of CB100/400/500/700/900

R: Termination resistors (Example: 120 Ω 1/2 W) If communication errors occur frequently due to the operation environment or the communication distance, connect termination resistors.



R: Termination resistors (Example: 120 Ω 1/2 W) If communication errors occur frequently due to the operation environment or the communication distance, connect termination resistors.

*R: Termination resistors (Example: 120 Ω 1/2 W) If communication errors occur frequently due to the operation environment or the communication distance, connect termination resistors.


■ Wiring of MA900/901

*R: Termination resistors (Example: 120 Ω 1/2 W) If communication errors occur frequently due to the operation environment or the communication distance, connect termination resistors.

■ Wiring of LE100 COM-H Paired wire LE100 (COM. PORT1) (-) T (A) 1 T/R (A) 1 ∛ *R T (B) 2 2 T/R (B) 3 SG SG 3 (+) R (B) 4 1 R (A) 5 SG 6 Shielded twisted pair wire Connector *R: Termination resistors (Example: 120 Ω 1/2 W)

R: Termination resistors (Example: 120 Ω 1/2 W) If communication errors occur frequently due to the operation environment or the communication distance, connect termination resistors.

*R: Termination resistors (Example: $120 \ \Omega \ 1/2 \ W$) If communication errors occur frequently due to the operation environment or the communication distance, connect termination resistors.

The first edition:OCT.2001The sixth edition:JUL.2013 [IMQ00]

RKC INSTRUMENT INC.

HEADQUARTERS: 16-6, KUGAHARA 5-CHOME, OHTA-KU TOKYO 146-8515 JAPAN

 PHONE:
 03-3751-9799 (+81 3 3751 9799)

 FAX:
 03-3751-8585 (+81 3 3751 8585)

 E-mail:
 info@rkcinst.co.jp

 Website:
 http://www.rkcinst.com/